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Abstract—We study the embedding of Hamiltonian cycle in the Crossed Cube, which is a prominent variant of the classical
hypercube, obtained by crossing some straight links of a hypercube, and has been attracting much research interest in literatures since
its proposal. We will show that due to the loss of link-topology regularity, generating Hamiltonian cycles in a crossed cube is a more
complicated procedure than in its original counterpart. The paper studies how the crossed links affect an otherwise succinct process to
generate a host of well-structured Hamiltonian cycles traversing all nodes. The condition for generating these Hamiltonian cycles in a
crossed cube is proposed. An algorithm is presented that works out a Hamiltonian cycle for a given link permutation. The useful
properties revealed and the algorithm proposed in this paper can find their way when system designers evaluate a candidate network’s
competence and suitability, balancing regularity and other performance criteria, in choosing an interconnection network.

Index Terms—Crossed cube, embedding, Hamiltonian cycles, interconnection architectures, network topology.
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1 INTRODUCTION

THE hypercube structure is a well-known interconnection
model. As an important topology to interconnect

multiprocessor systems, it has been proven to possess
many attractive properties, and multiprocessor computers
built with hypercube structure have been in existence for a
long time. Since its introduction many years ago, numerous
variants of hypercube have been proposed. One of the most
notable among them, the crossed cube, was first proposed by
Efe [6] and has attracted much attention in literatures [4],
[7], [9], [19], [20], [24]. An n-dimensional crossed cube,
denoted as CQn, is derived by “crossing” some links in an
n-dimensional hypercube (n-cube for short). With exactly
same hardware cost as hypercube, it has been shown that
such a simple variation gains important benefits such as
greatly reduced diameter.

There are many parallel and distributed algorithms
developed using such regular data structure as linear arrays,
rings, trees, and meshes. Their implementation on a
hypercube-type interconnection network very often requires
that a specific topology be mapped into the network. Of those
commonly used topologies, Hamiltonian cycle is frequently
formed among the nodes of the network. Being able to embed
a Hamiltonian cycle in an interconnection network is very
important: Besides its use in application algorithms, many
primitive network tasks such as multicasting and broad-
casting rely on establishing a path that traverses every node.
For example, a Hamiltonian path can be used in dual-path
and multipath multicast routing algorithms, so that conges-
tions incurred by traditionally tree-based multicast are
alleviated and deadlocks avoided [3], [21].

The Hamiltonianicity of various interconnection archi-
tectures has attracted the interest of many researchers, and

interesting results have been continuing to appear in
literatures [2], [11], [13], [14], [16], [17], [18]. In this paper,
we study the problem of embedding a family of regularly
structured Hamiltonian cycles in a crossed cube. Since the
crossed cube shows performance improvement over a
regular hypercube in many aspects, we are interested in
knowing whether it has the comparable capability in terms
of structure embedding—specifically, in this paper, the
embedding of Hamiltonian cycles. It needs to be pointed
out that we are only considering a family of Hamiltonian
cycles that can be systematically constructed, characterized
by the permutation of link dimensions (link permutation for
short). The total number hðnÞ of Hamiltonian cycles in a
regular n-dimensional hypercube happens to be huge, and
many of them cannot be constructed in a systematic way.
The exact hðnÞ has not been established for large n. For
example, hð3Þ is known to be 6, but hð4Þ jumps to 1,344. For
larger n, only bounds on hðnÞ are known [5], [12].

As will be shown in the paper, the partial loss of the
highly regular highly symmetrical topology in the hyper-
cube does affect the network’s capability in terms of
Hamiltonian embedding. We will show that due to this
loss of regularity in link-topology, an otherwise unified,
systematic procedure to generate Hamiltonian cycles for all
link permutations is now more complicated, and not every
permutation can generate a Hamiltonian cycle as it would
in the hypercube. The main contribution of this paper is a
characterization of link permutations in a crossed cube that
can facilitate Hamiltonian cycles. For those Hamiltonian
facilitating permutations, we propose an algorithm that
works out a well-structured Hamiltonian cycle.

It is worth noting that crossed cube and hypercube are
structurally different. In fact, the very notion of “dimen-
sion” is not as well defined in crossed cube as in hypercube.
However, crossed cube (and many other hypercube
variants) originated from hypercube. Many ideas and
techniques based on hypercube can still find their use in
these variants. The results of this paper show that the notion
of dimension, although somewhat blurred in crossed cube,
can still be well exploited when we develop algorithms on
crossed cube.

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

. The author is with the Department of Computer Science, Montclair State
University, Upper Montclair, NJ 07043.
E-mail: wang@pegasus.montclair.edu.

Manuscript received 20 Nov. 2006; revised 14 May 2007; accepted 13 June
2007; published online 28 June 2007.
Recommended for acceptance by B. Parhami.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0370-1106.
Digital Object Identifier no. 10.1109/TPDS.2007.70729.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:39 from IEEE Xplore.  Restrictions apply.



The rest of this paper is organized as follows: In
Section 2, we give a formal description of the crossed
cube and define notations used in this paper, including
notation for crossed links and link permutation; Section 2
also briefly reviews work in past literatures that are
related to the work in this paper. Section 3.1 presents a
succinct algorithm ðCQ HAMIL P0Þ that generates a
Hamiltonian cycle in a crossed cube for a special link
permutation. Through the presentation and proof of
CQ HAMIL P0, important insights are made that will
afford hints for a more general version of the algorithm.
In Section 3.2, we use an example to demonstrate an
important implication of CQ HAMIL P0. That is, at each
round of CQ HAMIL P0, the structure formed by the
remaining links is actually a �-connected subcrossed-cube
for n�1 � � � 2. In Section 4, we present the algorithm
ðCQ HAMILÞ to generate a Hamiltonian cycle with any
link permutation in a crossed cube, provided that the
permutation is Hamiltonian facilitating. In Section 5, we
research the relationship of a link permutation and its
Hamiltonianness and give a characterization of link
permutations that will/will not facilitate Hamiltonian
cycles. Section 6 gives some concluding remarks.

2 PRELIMINARIES AND PREVIOUS WORK

2.1 Crossed Cube

Definition 1 [6]. Let R ¼ fð00; 00Þ; ð10; 10Þ; ð01; 11Þ; ð11; 01Þg.
An n-dimensional crossed cube, denoted CQn, is recursively
defined as follows:

1. n ¼ 1. CQ1 consists of two nodes, labeled as “0” and
“1,” respectively, and they are connected by a link.

2. n ¼ 2.CQ2 consists of four nodes, labeled as “00,” “01,”
“10,” and “11”; any two nodes whose labels differ at
exactly one bit are connected by a link. That is, the four
links are {00, 01}, {00, 10}, {01, 11}, and {10, 11}.

3. For n � 3, CQn consists of two identical ðn�1Þ-
dimensional crossed cubes, CQ0

n�1, and CQ1
n�1:

. Node labeling. The nodes of CQ0
n�1 are labeled

0un�1 . . .u1, where un�1 . . .u1 are the labels of
CQn�1 nodes; the nodes of CQ1

n�1 are labeled
1vn�1 . . . v1, where vn�1 . . . v1 are the labels of
CQn�1 nodes.

. New links between CQ0
n�1 and CQ1

n�1. If n�1
is even, then nodes ð0un�1 . . .u1; 1vn�1 . . . v1Þ
have a link if

ðu2iu2i�1; v2iv2i�1Þ 2 R; 1 � i � n�1

2
: ð1Þ

If n�1 is odd, then nodes ð0un�1 . . .u1;

1vn�1 . . . v1Þ have a link if

un�1 ¼ vn�1 and ðu2iu2i�1; v2iv2i�1Þ 2 R;

1 � i � n-2

2
:

ð2Þ

To uniquely represent a link l in CQn, note that two
nodes connected by a straight link have exactly one bit
different (same as in the hypercube), whereas two nodes
connected by a crossed link have multiple different bits. We

denote a link li of dimension i (dim-i for short) using the
two nodes it connects. We use an “x” or “�x” to represent a
bit at which the two connected nodes have different (that is,
complementary) bits. We use capital “X” at the “major bit”
i for links of dim-i.

Definition 2. Let li be the dim-i link that links two nodes

u ¼ unun�1 . . .u1 and v ¼ vnvn�1 . . . v1, then li ¼ enen�1

. . . ei . . . e1, such that:

1. For iþ 1 � j � n, ej ¼ uj ¼ vj.
2. ei ¼ X.
3. For 1 � k � bi�1

2 c,

. if ðu2ku2k�1; v2kv2k�1Þ 2 fð00; 00Þ; ð10; 10Þg, then
e2ke2k�1 ¼ u2ku2k�1 ¼ v2kv2k�1 (“straight compo-
nent” of a link);

. if ðu2ku2k�1; v2kv2k�1Þ ¼ ð01; 11Þ and ui ¼ 0,
then e2ke2k�1 ¼ x1; if ðu2ku2k�1; v2kv2k�1Þ ¼
ð01; 11Þ and ui ¼ 1, then e2ke2k�1 ¼ �x1 (“cross
component” of a link); and

. if ðu2ku2k�1; v2kv2k�1Þ ¼ ð11; 01Þ and ui ¼ 0,
then e2ke2k�1 ¼ �x1; if ðu2ku2k�1; v2kv2k�1Þ ¼
ð11; 01Þ and ui ¼ 1, then e2ke2k�1 ¼ x1 (“cross
component” of a link).

4. For the case of ði�1Þ being odd, ei�1 ¼ ui�1 ¼ vi�1.

If a link representation contains any cross component, it
is said to be a crossed link. As an example, for a CQ4, the
links are denoted as follows (with the nodes they connect):

dim-1 : 0000 ��!000X
0001; 0010 ��!001X

0011;

0100 ��!010X
0101; 0110 ��!011X

0111;

1000 ��!100X
1001; 1010 ��!101X

1011;

1100 ��!110X
1101; 1110 ��!111X

1111:

dim-2 : 0000 ��!00X0
0010; 0001 ��!00X1

0011;

0100 ��!01X0
0110; 0101 ��!01X1

0111;

1000 ��!10X0
1010; 1001 ��!10X1

1011;

1100 ��!11X0
1110; 1101 ��!11X1

1111:

dim-3 : 0000 ��!0X00
0100; 0001 ��!0Xx1

0111;

0010 ��!0X10
0110; 0011 ��!0X�x1

0101;

1000 ��!1X00
1100; 1001 ��!1Xx1

1111;

1010 ��!1X10
1110; 1011 ��!1X�x1

1101:

dim-4 : 0000 ��!X000
1000; 0001 ��!X0x1

1011;

0010 ��!X010
1010; 0011 ��!X0�x1

1001;

0100 ��!X100
1100; 0101 ��!X1x1

1111;

0110 ��!X110
1110; 0111 ��!X1�x1

1101:

2.2 Link Permutation

The host of Hamiltonian cycles concerned in this paper takes a
well-structured format. Each one of them assigns the needed
links in a well-patterned manner. For example, it may use all
(that is, 2n�1) links of dimension n, half (that is, 2n�2) of the
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links of dimension 1, and 1/4 (that is, 2n�3) of the links of
dimension 2, and so on. This assignment of links to
dimensions is called the permutation of a Hamiltonian cycle.
Formally, we use

P : ½1::n�7!½1::n� 1�

to denote a permutation, where P ðiÞ ¼ j represents that
2j links of dimension i will be used in forming the
Hamiltonian ring. Since a Hamiltonian ring traverses all
nodes, we must have

Pn
i¼1 P ðiÞ ¼ 2n.

Clearly, there are n! different permutations in total. In a
regular hypercube, all permutations can generate a Hamil-
tonian ring, which is of essentially the same structure. By
renaming the links, a unified procedure can be used to
produce all of them. In the crossed cube, however, the
crossing of links makes some permutations unable to form a
Hamiltonian cycle, as will be shown later.

2.3 A Brief Review of Related Previous Work

Since its proposal, various properties of crossed cube have
been studied by many researchers. In [1], Abuelrub and
Bettayeb studied the embedding of rings of various lengths
into a node-faulty crossed cube with up to 2n�3 faulty nodes.
Using the idea first proposed by Efe and Fernandez [8] that
edge congestion should be an important parameter for
analyzing various properties of graphs, Chang et al. showed
in [4] that crossed cube and hypercube have actually the same
edge congestion. In [9], Fan showed that a CQn is
n-diagnosable under a major diagnosis model—the compar-
ison diagnosis model. In their most recent work, Fan et al. [10]
studied the problem of optimal embedding of paths of
different lengths between any two nodes in crossed cubes. It
was proved that in a CQn, the paths of all lengths between
dnþ1

2 e þ 1 and 2n � 1 can be optimally (that is, with a dilation of
1) embedded between any two distinct nodes. Kulasinghe
and Bettayeb [20] showed that the ð2n�1Þ-node complete
binary tree can be embedded into the CQn with dilation 1.

The fault-tolerant cycle embedding of CQn has been
separately studied in [15] and [23]. Both works considered
faulty CQn with hybrid node and/or edge faults and
proved that any cycle of length l ð4 � l � jV ðCQnj � fvÞ can
be embedded into a faulty CQn with dilation 1, where fv is
the number of faulty nodes, and the total number of faults
(nodes and edges) is less than n�2. In [24], Zheng and Latifi
introduced the notion of reflected link label sequence and used
it to define a Generalized Gray Code (GGC), which was used
to determine whether a given sequence of links form a
Hamiltonian path or cycle in a CQn. A scheme was also
proposed to embed a cycle of arbitrary length into a CQn.

3 HAMILTONIAN CYCLE GENERATION FOR A

SPECIAL LINK PERMUTATION

To make some insightful observations that can help us
devise an algorithm that works out a Hamiltonian cycle
in a crossed cube, we will first make use of a known
algorithm to generate a Hamiltonian cycle for a special
permutation. The algorithm was originally used to
generate Hamiltonian cycles in a regular hypercube [22].
Renamed as CQ HAMIL P0 in this paper, we will show
that it can be directly used to produce a Hamiltonian
cycle for the given permutation.

For the purpose of our algorithm, we list the n2n�1 links of
CQn in a specific pattern, that is, the n2n�1 are listed in

ncolumns,with column icontaining all links ofdim-i. The first
column lists the 2n�1 links in the following “increasing” order:

000 . . . 00X
000 . . . 01X
� � � � � � � � �

111 . . . 11X|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

:

The ith column, 2 � i � n, is obtained by first left-
rotating one bit, including the X-bit, for all links in the
ði�1Þth column. For example, for CQ4, we first get

dim�4 dim�3 dim�2 dim�1
X000 0X00 00X0 000X
X001 1X00 01X0 001X
X010 0X01 10X0 010X
X011 1X01 11X0 011X
X100 0X10 00X1 100X
X101 1X10 01X1 101X
X110 0X11 10X1 110X
X111 1X11 11X1 111X

Then, according to the structure rule of the crossed cube, for
eachdim-i, i � 3, perform the following bit-turning operation:
For 1 � k � bi�1

2 c, turn “02k12k�1” into “x2k12k�1”; turn
“12k12k�1” into “�x2k12k�1.” The resulting link listing of CQ4 is
given below:

dim�4 dim�3 dim�2 dim�1
X000 0X00 00X0 000X
X0x1 1X00 01X0 001X
X010 0Xx1 10X0 010X
X0�x1 1Xx1 11X0 011X
X100 0X10 00X1 100X
X1x1 1X10 01X1 101X
X110 0X�x1 10X1 110X
X1�x1 1X�x1 11X1 111X

The listing of all links of CQ5 is

dim�5 dim�4 dim�3 dim�2 dim�1
X0000 0X000 00X00 000X0 0000X
X00x1 1X000 01X00 001X0 0001X
X0010 0X0x1 10X00 010X0 0010X
X00�x1 1X0x1 11X00 011X0 0011X
Xx100 0X010 00Xx1 100X0 0100X
Xx1x1 1X010 01Xx1 101X0 0101X
Xx110 0X0�x1 10Xx1 110X0 0110X
Xx1�x1 1X0�x1 11Xx1 111X0 0111X
X1000 0X100 00X10 000X1 1000X
X10x1 1X100 01X10 001X1 1001X
X1010 0X1x1 10X10 010X1 1010X
X10�x1 1X1x1 11X10 011X1 1011X
X�x100 0X110 00X�x1 100X1 1100X
X�x1x1 1X110 01X�x1 101X1 1101X
X�x110 0X1�x1 10X�x1 110X1 1110X
X�x1�x1 1X1�x1 11X�x1 111X1 1111X

Using this listing of links, the algorithm CQ HAMIL P0

presented below constructs a Hamiltonian cycle by selec-
tively removing ðn�2Þ2n�1 links from a CQn, so that the
remaining 2 � 2n�1 ¼ 2n links just construct a Hamiltonian
cycle, which is effectively a Hamiltonian cycle for the
following link permutation:
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P0ðiÞ ¼
1 i ¼ n� 1
n� 1� ðimod nÞ otherwise:

�

3.1 Hamiltonian Cycle Generation for P0

CQ HAMIL P0 takes as input the complete link-set of a
CQn, listed in n columns, as shown above. The 2n�1 links in
each column are referred as the first link, second link, . . . , in
top-down order.

ALGORITHM CQ HAMIL P0

{Purpose: Remove ðn�2Þ2n�1 links from a CQn to

induce a Hamiltonian cycle}

Input: The complete link set of CQn listed in
n columns

Output: The remaining 2n links forming a

Hamiltonian cycle

for (j ¼ 1 to n�2)

{

at column j,

for i ¼ 1 to 2n�j�1

{ remove the ith link }
at column jþ 1,

for i ¼ 2n�j�2 þ 1 to 2n�2

{ remove the ith link }

at column jþ 1,

for i ¼ 2n�2 þ 1þ 2n�j�2 to 2n�1

{ remove the ith link }

} /* end_for */

Applying CQ HAMIL P0 to a 4-cube and a 5-cube,
respectively, the Hamiltonian link sets generated by
CQ HAMIL P0 are shown below in Fig. 1. Fig. 2 shows
the Hamiltonian cycle CQ HAMIL P0 generates for CQ4.

Note that both Hamiltonian link sets in Fig. 1 implement
permutation P0.

In the remainder of this section, we will first prove a
property of the remaining links after running
CQ HAMIL P0. We then prove that these links indeed
form a Hamiltonian cycle traversing all 2n nodes.

Lemma 1. Of the remaining links after CQ HAMIL P0, for any

two links li of dim-i and lj of dim-j, where i 6¼ j and

i; j 2 f1; 2; . . . ; n�1g, li and lj do not share a same node.

Proof. In each round of Algorithm CQ HAMIL P0,
exactly 2n�1 links are removed. Among them, 2n�j�1

links are removed from dimension j and 2n�1 � 2n�j�1

from dimension jþ 1. After n�2 rounds, the remaining
links follow the pattern described below:

. Upper half links. In dim-1 through dim-ðn�2Þ, all
links in the upper half are removed; in dim-ðn�1Þ,

WANG: ON EMBEDDING HAMILTONIAN CYCLES IN CROSSED CUBES 337

Fig. 1. Links forming Hamiltonian cycles in CQ4 and CQ5. Note that the link assignment in both cases is as specified in P0.

Fig. 2. Hamiltonian cycle induced from CQ4.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:39 from IEEE Xplore.  Restrictions apply.



only the first link ð0X00 . . . 0Þ remains in the
upper half.

. Lower half links. The third for-loop in
CQ HAMIL P0 removes links in the lower half.
The first round removes 2n�3 links from the
bottom of dim-2; the second round removes
2n�3 þ 2n�4 ¼ 3 � 2n�4 links from the bottom of
dim-3; the third 2n�3 þ 2n�4 þ 2n�5 ¼ 7 � 2n�5 links
from dim-4, and so on. The layout of the
remaining lower half links (upto dim-ðn�1Þ)
looks like an upside-down staircase.

Two example results for CQ4 and CQ5 are shown in
Fig. 1. Because of the way the links are originally listed,
the following properties of the remaining links are
noticed (refer to examples in Fig. 1 to help make the
observation): All links in dim-1 have their bit-n being
“1,” whereas all links in dim-i, 2 � i � n�1, have their
bit-n being “0.” Therefore, dim-1 links share no nodes
with any dim-i links, 2 � i � n�1.

Links in dim-j, 2 � j � n�2: All links in dim-j have
their bit-ðj�1Þ being “1,” whereas all links in dim-i,
jþ 1 � i � n�1, have their bit-ðj�1Þ being “0.” There-
fore, dim-j links share no nodes with any dim-i links,
jþ 1 � i � n�1. tu

Theorem 1. Algorithm CQ HAMIL P0 generates a Hamilto-
nian cycle that traverses all 2n nodes of a CQn.

Proof. The proof for Theorem 1 is provided in the
Appendix. tu
CQ HAMIL P0 works out a Hamiltonian cycle for a

special permutation, P0. In a regular hypercube, the same
procedure can be used to generate a Hamiltonian cycle for all
permutations. However, as pointed out earlier, in a CQn, not
all permutations can generate a Hamiltonian cycle. In
Section 4, we will present an extended more complex version
of CQ HAMIL P0 that can produce a cycle for any link
permutation, provided the permutation is Hamiltonian
facilitating. Then, in Section 5, we will characterize the
permutations that can or cannot generate a Hamiltonian cycle
in CQn.

3.2 A More General Implication of CQ HAMIL P0

The for-loop of CQ HAMIL P0 runs ðn�2Þ rounds to arrive
at a Hamiltonian cycle for a particular link permutation (that
is, P0). The cycle can also be viewed as a 2-connected
subnetwork of CQn. It is worth pointing out a more general
implication of CQ HAMIL P0. That is, at each round of the
for-loop of CQ HAMIL P0, the structure formed by the

remaining links is actually a �-connected subnetwork,

n�1 � � � 2, which contains all 2n nodes of CQn and

preserves the symmetrical structure. That makes the

Hamiltonian cycle generated by CQ HAMIL P0 a special

case of a more general procedure.
However, as has been emphasized, CQ HAMIL P0 only

generates one particular cycle for one particular link

permutation. The objective of this paper is to characterize

all link permutations that facilitate Hamiltonianness, and

devise an algorithm to generate Hamiltonian cycles for any

facilitating permutation. In this section, we will just

demonstrate this general implication of CQ HAMIL P0

through an example CQ4. A formal proof that it holds true

for CQn of any n is another major undertaking and is

beyond the range of this paper.
Before applying CQ HAMIL P0, CQ4 and its complete

link set are shown in Fig. 3.
After the first round of the for-loop of CQ HAMIL P0

(that is, j ¼ 1), the remaining link set and the corresponding

incomplete CQ4 are shown in Fig. 4. It is easy to verify that

it is a 3-connected graph.
When j ¼ 2, another 2n�1 links are removed by

CQ HAMIL P0, resulting in the link set and its correspond-

ing incomplete CQ4 shown in Fig. 5. The remaining links

form a cycle that traverses all nodes, and the graph is 2-

connected.
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been removed. The graph is 3-connected.

Fig. 5. The CQ4 after running CQ HAMIL P0 for j ¼ 2. 2� 2n�1 links

have been removed. The graph is 2-connected.
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4 THE ALGORITHM TO GENERATE A HAMILTONIAN

CYCLE WITH ARBITRARY PERMUTATIONS

The succinctness and simple form of CQ HAMIL P0 is due

to the special link permutation P0. If permutations are more

“arbitrary” than P0, the Hamiltonian cycle generation

becomes less concise a procedure. In this section, we will

present an algorithm that produces a Hamiltonian cycle

with any permutation that facilitates Hamiltonianness.
We name the algorithm CQ HAMIL, naturally after

CQ HAMIL P0. The main idea of the algorithm is to emulate

the steps of CQ HAMIL P0, that is, adding links of a

particular dimension at a time, so that bigger and bigger

disjoint sub-Hamiltonian paths are formed, as demonstrated

in the proof of Theorem 1. The choice/listing of links in each

dimension will follow a pattern similar to that in Fig. 18 (in the

Appendix, the proof for Theorem 1). For an easy grasp of the

points of algorithm CQ HAMIL, we will proceed in a

somewhat unconventional order: We will first go over the

steps of CQ HAMIL with an example permutation; we will

then describe the algorithm in a formal way.

4.1 An Example

Let us take an example of CQ5 and suppose the permuta-

tion P of

P ð1Þ ¼ 4 ðAll 16 linksÞ;
P ð3Þ ¼ 3 ð8 linksÞ;
P ð5Þ ¼ 2 ð4 linksÞ;
P ð2Þ ¼ 1 ð2 linksÞ;
P ð4Þ ¼ 1 ð2 linksÞ:

4.1.1 dim-1 Links

According to permutationP , all links of dim-1 are to be used.
They will form 16 disjoint 2-node subcubes, as illustrated in
Fig. 6. The used links are listed on the left in a special pattern:
Since dim-3 links are to be chosen next, we group the current
links in such a way that two links that differ only at bit-3 are
put together. By “merging” these two links into one, we
obtain a link that we need in the next step.

4.1.2 dim-3 Links

Refer to that in Fig. 7. The dim-3 links are obtained from the
link-set of the previous step. First, at bit-1, change all “X” to
“1.” Then, merge all pair of links, which differ only at bit-3.
Lastly, turn certain bits (to the right of bit-3) into either x or
�x, according to the link representation defined in Definition
2. For example, merging links “0000X”and “0010X,” we
first obtain “00X01,” and then, we turn the “01” right to bit-
3 into “x1,” finally, obtaining a needed link 00XXx1, as
pointed out in Fig. 7. Similarly, merging links “0001X”and
“0011X,” we obtain “00X11”; then by turning the “11” right
to bit-3 into “�x1,” we get a needed link 00XX�xx1, also pointed
out in Fig. 7.
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Fig. 6. The 16 links of dim-1. They form 16 disjoint 2-node subcubes.

Fig. 7. The eight (crossed) links of dim-3 are shown in bold lines. They merge the 2-node subcubes into disjoint 4-node sub-Hamiltonian paths.

Authorized licensed use limited to: Rutgers University. Downloaded on May 12, 2009 at 11:39 from IEEE Xplore.  Restrictions apply.



All consecutive pairs in Fig. 6 are merged, as described
above to generate the eight links in dim-3. We put together
two links that differ only at bit-5, since the next dimension
of links to be added is of dim-5.

4.1.3 dim-5 Links

Similar merge procedure as in the last step is performed.
First, for crossed links, change back those x=�x bits. Then,
merge the pair of links that are grouped together.

Rule of bit-change in the merged links:

. The bit of immediately previous dimension (that is,
dim-3) is changed from “X” to “1” ðX ! 1Þ.

. The bit that is “1” in last step (that is, dim-1) now
assumes “0” ð1! 0Þ.

. The bit that is “0” in last step remains “0” ð0! 0Þ.
After the bit-change, turn certain bits (to the right of bit-5)
into either x or �x due to the crossed link effect.

Four links of dim-5 are generated, as shown in Fig. 8.
Links that differ only at bit-2 are put together because the
next dimension of links to be added is of dim-2.

4.1.4 dim-2 Links

The same procedure as in the last step. Two links of dim-2
added, as shown in Fig. 9.

4.1.5 dim-4 Links
Merging the two links from previous step produces link
0X010, which will complete a 32-node Hamiltonian path, as
can be seen in Fig. 10. We need one more “last link” for a
Hamiltonian cycle. That last link is obtained by switching “1”
to “0” at the dimension of the previous step. In this example, it
is bit-2. Thus, the last link is 0X000, as illustrated in Fig. 10.

4.1.6 Algorithm Correctness
A complete proof would be very similar to that of
Theorem 1. Therefore, we will just highlight the main
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Fig. 8. The four links of dim-5 are shown in bold lines. They merge the 4-node subcubes into disjoint 8-node sub-Hamiltonian paths.

Fig. 9. The two links of dim-2 are shown in bold lines, merging the 8-node subcubes into disjoint 16-node sub-Hamiltonian paths.

Fig. 10. Link 0X010 will give an all-node Hamiltonian path; adding 0X000 completes the construction of a Hamiltonian cycle.
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points. Refer to Fig. 11, and compare it with Fig. 18. It
can be observed that the two link-merge procedures are
performing essentially the same operations, except in
different order of dimensions. Dim-1 (dim-3, dim-5, etc.)
links in Fig. 11 play the roles of dim-n (dim-1, dim-2, etc.)
links in the proof of Theorem 1. Dim-1 links first form the
16 2-node subcubes (also sub-Hamiltonian paths). Then,
the links of subsequent dimensions are added, one
dimension at a time. It is fairly obvious to see that the
new links (that is, links of next dimension) are chosen/
grouped to guarantee the following critical properties:

. The newly added dimension of links does not
share nodes with links of any previous dimen-
sions, except that of dim-1 (property of Lemma 1).
This is guaranteed by bit-change rules, as stated in
the step of dim-5 links (“X ! 1,” “1! 0,” and
“0! 0” rules).

. Every newly added link merges two sub-Hamilto-
nian paths to form a bigger (size doubled) sub-
Hamiltonian path.

Maintaining the above two properties, an essentially the
same procedure as demonstrated in the proof of Theorem 1
will be effected; the final round will produce an all-node
Hamiltonian path; and finally, the “last link” completes the
Hamiltonian cycle.

4.2 Algorithm Description

Having gone through the steps of CQ HAMIL with an
example, we now describe the algorithm in general terms.
As we will show in Section 5, not all permutations can
facilitate a Hamiltonian cycle. Therefore, the assumption of
the algorithm is that the input permutation is indeed
Hamiltonian facilitating.

ALGORITHM CQ HAMIL

The algorithm specifies the links at each dimension of the

given permutation. Let the Hamiltonian facilitating

permutation P be

fP ðd1Þ ¼ n�1; P ðd2Þ ¼ n�2; P ðd3Þ ¼ n�3; � � � � � � ;
P ðdn�1Þ ¼ 1; P ðdnÞ ¼ 1g:

dim-d1 links

All 2n�1 links of dim-d1 are used. To prepare for the next

dimension in the permutation ðdim-d2Þ, we match links

in such a way that two links are put together if they

differ only at bit-d2. There may be two different cases:

. Two links that are exactly the same except at bit-d2,

where they have “0” or “1,” respectively, are put

together.

. For d2 < d1, d2 even, and bit-ðd2 � 1Þ ¼ 1, two links

that are exactly the same except at bit-d2, where they

have “x” or “�x,” respectively, are put together.

dim-d2 links

Every pair of put-together links from last step will

generate one dim-d2 link by the following procedure

mergeðd1 ! d2Þ.

mergeðd1 ! d2Þ
For all pairs of dim-d1 links, do {

1. take either link of the pair; set bit-d2 to “X”;

2. set bit-d1 to “1”;

3. for all bits e2ke2k�1 such that d2 > 2k,

if e2ke2k�1 ¼ ‘‘01}, set e2ke2k�1 to “x1”;

if e2ke2k�1 ¼ ‘‘11}, set e2ke2k�1 to “�x1”;

4. for all bits e2ke2k�1 such that 2k� 1 > d2,

if e2ke2k�1 ¼ ‘‘x1}, set e2ke2k�1 back to “01”;

if e2ke2k�1 ¼ ‘‘�x1}, set e2ke2k�1 back to “11.”

}

The result of running mergeðd1 ! d2Þ is the set of dim-d2

links needed to construct the Hamiltonian cycle for the

given permutation. They are grouped together according

to bit-d3, the same way as described in the previous step.

The merge operation for the subsequent dimensions is

almost the same as that of dim-d2, except at step 2.

dim-di links ð3 � i � n�1Þ
mergeðdi�1 ! diÞ

For all pairs of dim-di�1 links, do {

1. take either link of the pair; set bit-di to “X”;

2. a. set bit-di�1 to “1”;

b. set bits di�2; di�3; . . . ; d1 to “0”;

3. for all bits e2ke2k�1 such that di > 2k,

if e2ke2k�1 ¼ ‘‘01}, set e2ke2k�1 to “x1”;

if e2ke2k�1 ¼ ‘‘11}, set e2ke2k�1 to “�x1”;

4. for all bits e2ke2k�1 such that 2k� 1 > di,

if e2ke2k�1 ¼ ‘‘x1}, set e2ke2k�1 back to “01”;

if e2ke2k�1 ¼ ‘‘�x1}, set e2ke2k�1 back to “11.”

}

mergeðdi�1 ! diÞ produces dim-di Hamiltonian links,

which are then grouped together according to bit-diþ1.
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Fig. 11. Merging to produce links for the next dimension in the

permutation.
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dim-dn links

mergeðdn�1 ! dnÞ will give one dim-dn Hamiltonian

link, which must be of the form

0 . . . 0Xdn
0 . . . 01dn�1

0 . . . 0 or 0 . . . 01dn�1
0 . . . 0Xdn

0 . . . 0

That is, “X” at bit-dn, and “1” at bit-dn�1. The “Last link”

to complete the Hamiltonian cycle is then, respectively

0 . . . 0Xdn
0 . . . 00dn�1

0 . . . 0 or 0 . . . 00dn�1
0 . . . 0Xdn

0 . . . 0:

5 HAMILTONIAN FACILITATING PERMUTATIONS IN

CROSSED CUBES

In this section, we will characterize link permutations that

facilitate Hamiltonian cycles in a crossed cube CQn.
In a regular hypercube, all permutations of links can

produce a Hamiltonian cycle, and their structures are

essentially the same. CQ HAMIL P0 would be applied to

any given permutation; all that needs to be done before

applying CQ HAMIL P0 is to rename the nodes (and

therefore, the links) to accommodate to the given permuta-

tion. In Fig. 12, cycles are shown using three different

permutations.
In a crossed cube, however, due to the loss of some

regularity in link topology, not all permutations can

facilitate a Hamiltonian cycle. For a simple example CQ3,

the Hamiltonian cycle produced by CQ HAMIL P0 is as

shown in Figs. 13a and 13b. If you would like to use all links

of dim-1 (that is, for a permutation P such that P ð1Þ ¼ 2), a

Hamiltonian cycle can still be generated (Fig. 13c). How-

ever, if you would like to use all links of dim-2 (that is, for a

permutation P such that P ð2Þ ¼ 2), then no matter how you

arrange the links in other dimensions, a Hamiltonian cycle

will not be formed, as can be observed in Fig. 13d.

Therefore, what is characteristic of a permutation that

makes it Hamiltonian facilitating? The most important

property of a Hamiltonian facilitating permutation is that of

Lemma 1, where the links in dim-p2 through dim-pn are not

touching each other. That means, every one of them touches

only with dim-p1 links at both ends.
Take the example of CQ5 in Fig. 1, where d1 ¼ n; d2 ¼

1; d3 ¼ 2; . . . Since P ðnÞ ¼ n�1, which means that all dim-n

links are present, each node in dim-1 through dim-ðn�1Þ
will have exactly degree 2, a necessary condition for

Hamiltonianness. We refer to the link set of CQ5 in

Fig. 14 to characterize its pattern.
The permutation of the link set in Fig. 14 is

P0ð5Þ ¼ 4 ðAll 16 linksÞ;
P0ð1Þ ¼ 3 ð8 linksÞ;
P0ð2Þ ¼ 2 ð4 linksÞ;
P0ð3Þ ¼ 1 ð2 linksÞ;
P0ð4Þ ¼ 1 ð2 linksÞ:
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Fig. 12. In a regular three-dimensional hypercube, three different

permutations and their respective Hamiltonian cycles. By turning them

around, they can become of exactly the same structure.

Fig. 13. (a) and (b) The Hamiltonian cycle in CQ3 produced by CQ HAMIL P0, (c) using all links of dim-1, a Hamiltonian cycle can still be formed,

and (d) using all links of dim-2, a Hamiltonian cycle will not be formed no matter how you arrange the remaining links.

Fig. 14. The pattern of links in a Hamiltonian facilitating permutation.
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In dim-5, bit-5 is of X, as it should be. In the following

dimensions 1, 2, 3, and 4, bit-5 is of 1, 0, 0, and 0,

respectively. Therefore, in this Hamiltonian-facilitating link

set, the change of bit-5 takes the pattern of ðX ! 1! 0!
0! 0Þ for all links. In dim-1, the dimension that has the

second-most links, bit-1 is of X; and then, in the following

dimensions 2, 3, and 4, it is of 1, 0, and 0. The change of bit-1

takes the pattern of ðX ! 1! 0! 0Þ. To list them all:

bit�5 : ðX ! 1! 0! 0! 0Þ;
bit�1 : ðX ! 1! 0! 0Þ;
bit�2 : ðX ! 1! 0Þ;
bit�3 : ðX ! 1Þ

ðnot counting the special ‘‘last link’’ 0X000Þ;
bit�4 : ðXÞ:

In the example of CQ5 in Fig. 11, with which we went over

algorithm CQ HAMIL, the exactly same patter also

demonstrates

bit�1 : ðX ! 1! 0! 0! 0Þ;
bit�3 : ðX ! 1! 0! 0Þ;
bit�5 : ðX ! 1! 0Þ;
bit�2 : ðX ! 1Þ;
bit�4 : ðXÞ:

It is this bit-pattern of ðX ! 1! 0! 0! � � � ! 0Þ of

links that guarantees the property of Lemma 1; for

otherwise, if some 0-bit were turned to a “x” (or 1-bit to

“�x”) due to crossed link, it would imply that there would be

a node touched by more than two links (consequently, there

would be another node touched by less than two links),

violating the property of Lemma 1.
Observing the small example of CQ3 again, for the

Hamiltonian cycle in Fig. 13c, the link set is

dim�3 dim�2 dim�1
X10 0X1 00X

1X1 01X
X00 10X

11X

bit�1 : ðX ! 1! 0Þ
bit�2 : ðX ! 1Þ
bit�3 : ðXÞ

which preserves the required bit pattern.
However, if we try to list the links in Fig. 13d, making an

effort to keep the pattern, we would have a situation either

in Fig. 15a or in 15b. In both cases, the x- or �x-bit of a

crossed link will cause the violation of the pattern of

ðX ! 1! 0! � � � ! 0Þ, which will then cause the violation

of Lemma 1.

Theorem 2. In a CQn, let d1; d2; . . . ; dn represent the n

dimensions. Let a permutation P be such that

P ðd1Þ ¼n� 1 ð2n�1ðallÞ links of dim� d1Þ;
P ðd2Þ ¼n� 2 ð2n�2ðhalfÞ links of dim� d2Þ;

� � � � � �
P ðdpÞ ¼n� p ð2n�p links of dim� dpÞ;

� � � � � �
P ðdqÞ ¼n� q ð2n�q links of dim� dqÞ;

� � � � � �
P ðdrÞ ¼n� r ð2n�r links of dim� drÞ;

� � � � � �
P ðdn�1Þ ¼ 1 ð2 links of dim� dn�1Þ;
P ðdnÞ ¼ 1 ð2 links of dim� dnÞ:

If P is such that p < q < r, and

1. dp ¼ 2k for some k, dq ¼ 2k� 1, dr > dp, and
r ¼ q þ 1; or

2. dp ¼ 2k for some k, dr ¼ 2k� 1, and dq > dp,

then P will not facilitate a Hamiltonian cycle.

Before proving it, let us check out Theorem 2 with the small
examples in Fig. 15. The permutation Pa in Fig. 15a is
fPað2Þ ¼ 2; Pað1Þ ¼ 1; Pað3Þ ¼ 1g; we have dp ¼ 2ð¼ 2 � 1Þ,
dq ¼ 1ð¼ 2 � 1� 1Þ, 3 ¼ dr > dp ¼ 2, and dr immediately
follows dq in Pa (condition 1 of Theorem 2). The permutation
Pb in Fig. 15b is fPbð2Þ ¼ 2; Pbð3Þ ¼ 1; Pbð1Þ ¼ 1g; we have
dp ¼ 2,dr ¼ 1, and 3 ¼ dq > dp ¼ 2 (condition 2 of Theorem 2).

Proof. We will show that the conditions in Theorem 2 will
result in either a bit-pattern of ðX ! 1 � � � ! x! � � �Þ, or
ðX ! �x! � � �Þ at bit-dp.

1. dp ¼ 2k, dq ¼ 2k� 1, dr > dp, and r ¼ q þ 1.
If dp ¼ 2k and dq ¼ 2k� 1, bits dp and dq are

adjacent in link representation. The permutation
P determines that the order of the link merge is
dp ! � � � ! dq ! dr. When dim-dp links are gener-
ated, because dr > dp, we will have a link with the
following representation:

. . . edr . . .Xdp0dq . . . ;
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Fig. 15. (a) The bit-pattern at bit-2 is now ðX ! 1! xÞ. Crossed link “Xx1”
(underlined) causes the violation of the ðX ! 1! 0Þ bit-pattern, causing
node “111” to have degree 3, “101” to have degree 1. (b) The bit-pattern at
bit-2 now contains ðX ! �x! 0Þ, caused by crossed link “X�x1.”
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where edr 2 f0; 1g. According to algorithm
CQ HAMIL, bit-dp assumes 1dp ! 0dp ! 0dp !
� � � in the subsequent link merges. Therefore, by
the time of dim-dq link merge, we have a link with
the following representation:

. . . edr . . . 0dpXdq . . . :

Since r ¼ q þ 1, the immediate next link merge is
for dim-dr. According to algorithm CQ HAMIL,
one link will be

. . .Xdr . . .xdp1dq . . . :

The “xdp” contravenes the Hamiltonian facilitat-
ing pattern and, as we pointed out before, will
cause the violation of the property of Lemma 1.

2. dp ¼ 2k, dr ¼ 2k� 1, and dq > dp.
Since dp ¼ 2k and dr ¼ 2k� 1, bits dp and dr are

adjacent in link representation. Also, we have
dq > dp. Therefore, when generating dim-dp links,
we must have a link as follows:

. . . edq . . .Xdp1dr . . . :

We make two cases and show that in each case,
the Hamiltonian facilitating pattern is violated.

Case 1. q ¼ pþ 1.
q ¼ pþ 1 means that dim-dq is the immediate

next dimension to generate links. According to
the algorithm, the link generated out of
“. . . edq . . .Xdp1dr . . . ” would be

. . .Xdq . . . �xdp1dr . . . ;

giving ðXdp ! �xdp ! � � �Þ at bit-dp.
Case 2. q > pþ 1.

If q > :pþ 1, there will be at least one other
dimension before dim-dq to generate links. Ac-
cording to the algorithm, links generated out of
“. . . edq . . .Xdp1dr . . . ” would include

½. . . edq . . . 1dp1dr . . .� ! ½. . . edq . . . 0dp1dr . . .� ! � � � !
½. . .Xdq . . .xdp1dr . . .�;

giving ðXdp ! 1dp � � � ! xdp ! � � �Þ at bit-dp. tu

6 CONCLUSION

Numerous variants of hypercube have been proposed and
studied. Most of them were conceived to bring about
improvement in some aspects of their original counterpart
by discounting its high regularity. A good understanding of
the implication of this loss of structural regularity is a worthy
undertaking from both architectural and algorithmic points
of view. In this paper, we did a thorough study of the problem
of embedding Hamiltonian cycle in crossed cubes. Crossed
cube is one of the most prominent variants of hypercube,
which has been shown to outperform hypercube in some
important aspects. Due to the loss of link-topology regularity
in crossed cube, producing Hamiltonian cycles in a crossed
cube is more intricate of a process than in a regular hypercube.
What is more, not all link permutations can facilitate a
Hamiltonian cycle as in the case of regular hypercube. In this
paper, we have proposed the characterization of Hamiltonian
facilitating permutations in a crossed cube. An algorithm was
presented that generates a Hamiltonian cycle for a given
Hamiltonian facilitating permutation.

APPENDIX

Proof for Theorem 1. After running CQ HAMIL P0, there
are 2n links remaining: All 2n�1 dim-n links, half of dim-1
links ð2n�2Þ, 1/4 of dim-2 links ð2n�3Þ; . . . , and, finally,
2 dim-ðn�2Þ links and 2 dim-ðn�1Þ links. (Fig. 1 shows
examples for CQ4 and CQ5. The pattern is very clear to
see and easy to extend to CQn of any n.) Lemma 1 proves
that none of the 2n�1 dim-i links ð1 � i � n�1Þ are
touching each other, which means every one of them
touches only with dim-n links at both ends. That means
that each node will have exactly degree 2, a necessary
condition for Hamiltonianness.

We then proceed by examining the effect of adding all
remaining links after running CQ HAMIL P0 column
by column. The procedure will be described in general
terms. However, whenever visualization helps make
observation, we refer to examples in Fig. 1 and a graph of
CQ4. It is easy to extend the observation to CQn of any n.

Before adding any links, all 2n nodes can be viewed as
isolated, trivial one-node subcubes. The result of
CQ HAMIL P0 preserves all 2n�1 links in dim-n. The
effect of adding these links is to connect the correspond-
ing nodes in the “left subcube” (nodes whose addresses
start with “0”) and “right subcube” (nodes whose
addresses start with “1”), so that there are now 2n�1
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Fig. 16. (a) Dim-n links (n ¼ 4 here) connect the corresponding nodes

so that there are now 2n�1 2-node subcubes; (b) Dim-1 links being

added. There are now 2n�2 isolated, 4-node subcubes.

Fig. 17. Dim-2 links being added. There are now 2n�3 isolated, 8-node

subcubes.
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isolated, 2-node subcubes. An example for CQ4 is
illustrated in Fig. 16a. Next, adding the 2n�2 links of
dim-1. Note that all remaining dim-1 links are from the
“right subcube.” Adding these will result in 2n�2

isolated, 4-node subcubes, as shown in Fig. 16b for the
example CQ4. It is worth pointing out that all dim-1 links
belong to different subcubes.

Next, 2n�3 links of dim-2 (all in the left subcube) are
added. Note that from now on, added links are all from
the left cube (the “0”-cube). The result is shown in Fig. 17
for the example CQ4.

It is necessary at this point to summarize what has
been done and to generalize what is effected as each
column of links are added. Fig. 18 illustrates the patterns.
When each dim-2 link is added (Fig. 18a), it makes a
single-link connection for two previously isolated 4-node
subcubes. For example, link 000000X1 connects two
subcubes, which links 1000000X and 1000001X belong
to, respectively. Note that no rings will be formed during
that process, because every time a new dim-2 link is
added, it connects a new pair of 4-node subcubes. At the
end of this round, the previously 2n�2 isolated, 4-node
subcubes are merged into 2n�3 isolated, 8-node subcubes,
with no rings formed.

Dim-3 links are added following exactly the same
pattern (Fig. 18b). At the end, the 2n�3 isolated, 8-node
subcubes are merged into 2n�4 isolated, 16-node sub-
cubes, with no rings formed.

The above process repeats. On each iteration, the
number of isolated, identical subcubes is reduced by
half. Before dim-ðn�1Þ links are added, there are just
2 ð¼ 2n�ðn�1ÞÞ identical subcubes, each having 2n�1

nodes. An example for CQ4 can be seen in Fig. 17.
The addition of one dim-ðn�1Þ link 0X100000 (Figs. 18c
and 19a) will merge the two subcubes into one
2n-node subcube, with no ring formed yet. The result is
now a Hamiltonian path traversing all nodes, with
nodes 00000000 and 01000000 “open ended.” The
addition of the “last link” 0X000000 of dim-ðn�1Þ will
complete the Hamiltonian cycle (Fig. 19b). tu
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