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Abstract

A parallel/distributed system consists of a collection of processes, which are distributed
over a network of processors, and work in a cooperative manner to fulfill various tasks. A hier-
archical approach is to group and organize the distributed processes into a logical hierarchy of
multiple levels to achieve better system performance. It has been proposed as an effective way
to solve various problems in distributed computing, such as distributed monitoring, resource
scheduling, and network routing. In [21], we studied hierarchical configuration for mesh and
hypercube networks to the end of achieving better system performance. In particular, we
proposed theoretically optimal hierarchy for mesh and hypercube, so that the total traffic flow
over the network is minimized.

In this paper, we present the experimental results to establish the practical relevance of
mesh hierarchy proposed in [21]. We simulated situations for multi-level division, real network
loading scenarios, random data aggregation rates, and different division sizes other than de-
rived in [21]. The simulation results not only show that the analytically obtained hierarchy
works well for many realistic settings, but also offer some useful insights into the proposed
hierarchy scheme.

Keywords — Hierarchical architecture, Hierarchy, Interconnection networks, Mesh, Par-

allel and distributed systems, Simulation.

285



286 D. Wang
1 Introduction

The topologies of many distributed systems are more or less hierarchical. If distributed functions
are performed in such a way as to reflect the underlying hierarchical topology, the algorithm
design can be simplified. A hierarchical architecture can also improve scalability of the distributed
functions and optimize their performance by increasing parallelism and reducing information flow.
As a matter of fact, the hierarchical approach that allows distributed processes to operate on a
logical structure is an established design methodology, and has been used in a variety of forms for
solving different distributed control problems, such as distributed monitoring, resource scheduling,
and network routing, either to effectively coordinate the local control activities or to enhance the

overall performance [1, 2, 5, 6, 8, 20].

In [21], we proposed hierarchical schemes for two regular networks: mesh and hypercube. Both
are very popular networks, have been extensively studied, and commercial parallel computers
using them have been available for a long time. We proposed hierarchy schemes on mesh and
hypercube that are shown to greatly reduce the traffic flow. As in most cases of optimization,
a hierarchical configuration optimizing in all aspects is impossible to achieve. Therefore it is
important to characterize the applicability of the proposed scheme. Generalizing the hierarchical
monitoring system in previous works [4, 18], the hierarchical configuration we presented in [21]
was best applicable to those tasks that need to process data collected from all processors of the
network, and the nature of the task allows “partial preprocessing” of data before they reach their
final destination. There are many such data in both computational and managerial tasks. A simple
example is to get the sum of certain value from all processors: it is not necessary for the master
adder of the network to collect all addends before it performs the addition — partial sums can
be obtained by some “submasters,” and sent to the master adder. That will prevent many pieces
of data from traveling all the way to the master, reducing the traffic flow in the network. Under
this context, by first limiting the levels of the hierarchy to two, we studied optimal hierarchical
configurations for mesh and hypercube. Based on analytical results, partitioning algorithms was

presented which were optimal in terms of total communication cost.

In this paper, we present a set of experimental results conducted for mesh network. Experimen-
tal simulation is an effective means to evaluate the competence of hierarchical schemes. In cases
of irregularly connected networks, or irregularly distributed traffic loads, it is the only means to
definitely quantify the improvement brought by a specific hierarchy method. In [21], we tackled
the problem of hierarchical configuration for mesh and hypercube in a theoretical framework.
For analytical tractability, the model we used to obtain the scheme is a simplification of realistic
situations. It is then crucial to understand the practical relevance of the derived hierarchical
methods. The work of this paper is to extend the analytical results by performing experimental

measurements, using the theoretical result as a guide to simulate hierarchical meshes for a variety
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of realistic settings.

The rest of this paper is organized as follows. In Section 2, we describe the hierarchical archi-
tecture systems, and formulate the optimal configuration problem under consideration. We then
introduce the analytical results of [21], based on which the experiments are carried out. In Section
3, we present a set of simulation results on mesh network for a variety of realistic scenarios, which
include multi-level division, non-unified traffic loads, hierarchy performance under various aggre-
gation rates, finding “division-worthy threshold” for different submesh sizes, etc. The implication
of the experimental results will be explained and discussed. In Section 4 we summarize the work

of this paper and outline possible directions for future work.

2 Analytical model for hierarchical division of mesh-structured

networks

The problem of optimal hierarchical configuration of a distributed system is concerned with finding
an optimal partition of the processes/processors in a given network environment. A configuration
of a system has three components: (1) a hierarchical partition of the nodes (processes/processors),
defined by the levels of the hierarchy, (2) the grouping of nodes at each level, and (3) the location
of the leader at each group. Optimization means to minimize the total processing cost. The
three costs that are of primary consideration are the amount of memory required, the amount
of communication between units, and the time required for processing. The work of [21] mainly

focused on reducing the amount of communication over the network.

In order to formulate such a problem quantitatively for analysis, in [21] we assumed a simpli-
fied model for the process of collecting information and perform some processing (e.g. combining
information, making decisions) based on it. In that context, a hierarchical organization consists
of local processes which aggregate information from other processes in the hierarchy, passing that
information through the hierarchy. During this process, information can be condensed as it passes
through the hierarchy. The target was to minimize the total communication cost, i.e., the amount
of data flowing in the network. In mesh-connected computers, a node sending data to its group
leader has to pass all intermediate nodes. Messages sent between processors far apart have to
travel long way, incurring great amount of data flow in the network. We normalized a node’s cost
for traveling to its immediate neighbor to “one step.” The number of steps that a node travels
to its leader is said to be its communication cost. For example, if there are 4 intermediate nodes
between a node and its data collector, the communication cost for collecting this node’s data
is 5. The total communication cost is the total number of steps that all nodes have to travel
in the processing. The work of [21] was to propose hierarchical division schemes for mesh (and

hypercube) so that the total communication cost was minimized. It is worth pointing out that in
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the treatment of [21], we assumed a normalized “1” cost for each hop of communication for the
purpose of mathematical tractability. In this paper, we will extend the analytical result by simu-
lating a variety of realistic scenarios. In particular, we will examine the cases where we dispose of
the assumption of unit hop cost. The simulation results therefore will serve the two-fold purpose
of checking out the proposed scheme’s practical relevance, and giving us the true sense of how
much improvement it brings about in reality. In the rest of this section we present the analytical

results of [21], based on which the experiments of this paper are conducted.

Let the squared mesh contain N? processors, with dimensions N x N. If the whole mesh is
viewed as one hierarchy (one-level), then choosing the center node as the master node (i.e., the
group leader with the entire mesh as the group) would obviously minimize the total communication
cost. Depending on whether N is an odd or even number, the cost can be calculated as follows.
See Figure 1. As has been pointed out, a simplified model is used in calculating the system’s
communication cost: here we assume a unit of packet from each node going to the master node,
and for each intermediate node it passes, we count one unit of communication cost. The farther

the node is from master, the more cost it incurs to travel to master.
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Figure 1: {a) A 5 x 5 mesh. At center is the master node (dark). Numbers in all other nodes
represent their communication costs. (b) A 6 x 6 mesh. The dark node at the “pseudo center” is

the master.

For the scenario that all nodes send a packet to the master, the total communication cost,
denoted as C(N), is calculated as

NN N odd
C(N) = (1
3;, N even

It can be shown that using any non-central monitor would cost more, with the monitor at corner

costing most.
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In a two-level partitioning, the whole mesh is divided into several submeshes. Each submesh
has a group leader. A group leader will collect data in its submesh, and then turn the data in to
a leader at the higher level. The purpose of hierarchical division is to reduce the cost incurred
by communication. Assuming two-level hierarchy, we need to find out the best way to divide
the mesh so that the total communication cost is minimum. Figure 2 illustrates the structure of

two-level hierarchical mesh.

Master of
levle-two

|
N/x levle-one >!
masters

Figure 2: T'wo-level partitioning. The N x N nodes are divided into (-12!)2 x x x submeshes. The

grey nodes are level-one leaders, the darkest node is level-two leader.

In the two-level hierarchical mesh, data transfer to the master node is performed in two phases.
In the first phase, all level-one masters receive data from nodes in their corresponding submeshes.
All level-one masters then aggregate and/or preliminarily process the collected data. In the sec-
ond phase, the level-two master (the darkest node in Figure 2) collects data (that have been
processed/aggregated) from all level-one masters. In [21], an optimal submesh size z is calcu-
lated, so that the total communication is minimized: for the two-level cost Cor(NV,x), taking
the derivative Car, (N, z)!, with respect to submesh size z, and solving Cs7.(N,z),, = 0 for 2, we

obtained an optimal submesh size x:

YorNy3 ¥3I8INE 1 2 odd
3 Y orN13 ¥31RINE

3
2N, T even
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3 2 ! . . .
The difference between V2N and [ Y2IN+3VS48INZ L is vanishingly small. So
3 /27N +3 ¥3181N2

for all practical purposes, we can just use an integer close to V2N for the size of submesh to

achieve the minimum total cost.

Theorem 1 [21] In a two-level hierarchical mesh, if the level-1 submesh is of dimensions x X «,
so that

1. x is as close to /2N as possible

2. x divides N

then the system’s total communication cost is minimaum.

Figure 3 illustrates an example of level-1, level-2, and total costs as function of submesh size z,
for a two-level hierarchical mesh, where the original mesh size is N = 72. /2N = /144 ~ 5.24.
According to Theorem 1, z = 6 will be chosen as the optimal submesh size. The total cost is

20736, which is minimum.
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Figure 3: Level-1, level-2, and total costs as function of submesh size z. The original mesh size is

N =72. Tt can be seen that there is a minimum total (two-level) cost.

The saving of communication cost gained by this two-level hierarchical scheme is quite sub-

stantial. The ratio of min.-two-level-cost /one-level-cost is (assuming even N, even x)

N2g 3+N3
2 z= \/Q’V
1\73
2

which is ever decreasing as N grows. F igure 4 shows a comparison between minimum two-level

cost and one-level cost: when N = 10, the min.-two-level-cost/one-level-cost ratio is about 40%;
when N = 100, less than 9%; when N = 200, less than 6%.
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Figure 4: Comparison of minimum two-level cost and one-level cost.

If the levels of partition are more than 2, cost can be further reduced. Extending the approach
for two-level partition, for a partition of m levels, let 1 be the submesh size at level-1 (the
bottom level), zo the submesh size at level-2, ..., so that N = x1 X 29 X --- X Zy,. Ideally, an
optimal total cost can be obtained by finding the minimum value of a multi-variable cost function
C(x1, ..., ). However, even for a modest m, that is a mathematically burdensome task. So
instead of computing the absolutely optimal partition for a larger m, we resort to repeatedly
applying the result for two-level partition, until the desired level number is reached or desired

total cost obtained.

It is observed that in optimal two-level partition, the cost of level-one (bottom level) is twice

as large as that of level-two. Assuming even N, even z:

1 N 1.
Cr(N,z = V2N) = =(a%) - (=) = S VaNT
1(N,z )= 5(@%) (=) e 2
and 1N 1 c
Cii(Nyz = V2N)= =(=)*-x = —V2NT =L
2z =%N 4 2

So, for three-level partition, we can do another two-level partition for all submeshes at the
bottom level, further reducing the total cost. As the number of levels increases, it is not always
the bottom level that has the largest cost. However, keeping track of the level of largest cost is
not a difficult job. All we need to do is to compare the current largest cost with the cost of newly
obtained level. The heuristic algorithm for multiple-level partition is described in Figure 5. The

experimental results regarding multiple-level partition will be presented in Section 3.
An important observation is that the magnitude of cost reduction, in terms of percentage,
drops rather quickly as each new level is added, i.e., the most substantial saving occurs when

the system goes from one-level to two-level, but much less substantial going from two-level to
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Do an optimal two-level partition /* initial step */
level Count «— 2
levelOfLargestCost « 2

repeat

{

At levelOfLargestCost, do an optimal two-level partition
Update levelOfLargestCost
level Count++

}

until ( levelCount = targetLevelNumber || totalCost < targetCost )

Figure 5: Heuristic algorithm for multiple-level partition.

three-level, and so on. Take the example of N = 72 again. The ratio of min.-two-level-cost/one-
level-cost %\3/ ﬁzg Ne7o ~ 11%, with the optimal level-one submesh size 6, and total cost 20736.
The costs at level-1 and level-2 are 15552 and 5184, respectively. Another two-level partition at

bottom-level will reduce the cost from 15552 to 8640. So the reduction rate from two-level to
three-level is (8640 + 5184) /20736 ~ 67%.

What this observation suggests is that after a few partitions, there will be no much significant
gain in cost reduction. Therefore, it is a good idea to set the number of levels to a modest value,

such as 3, 4, or 5, for most meshes, directly reducing the time complexity of the algorithm.

3 The experimental study

Appropriately designed experimental simulations are useful tools in evaluating various aspects
of a proposed scheme. Especially in cases where an analytical model is elusive, the competence
and practical relevance of the proposed scheme can only be assessed by experimental means.
Typical examples of such cases include irregularly connected networks, irregularly distributed
traffic loads, etc. In this section, we will present and discuss the implication of a series of simulation

experiments.

The simulations presented in this section are designed based on the theoretically obtained

submesh size, i.e., a factor in the closest neighborhood of ¥/2N, which assumes unit transfer of
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data in all submeshes and levels. While there are applications fitting in with this assumption,
to many applications this is an oversimplification of the real situation. In the experiments, we
simulated a variety of more realistic data transfer patterns using the N’s close-to-v2N factor as

submesh size.

3.1 Multi-level division

According to the analysis at the end of Section 2, the traffic reduction gain dramatically drops
as division levels increase. Therefore in the experiments we are mostly interested in investigating
network traffic reduction for two-level division. However, we still conducted simulation up to 6-
level division to reinforce the analytical conclusion for multi-level division. The experiment results
presented in this subsection for multi-level division still assume unit data transfer. Nevertheless,
these results suffice to give us the sense that beyond 2-level division, more gains may not worth

the overhead incurred by adding more levels.

Total Costs Ratios

N 1 Level 2 Levels 3 Levels 4 Levels 5 Levels 6 Levels 2L/1L 6L/5L
4 32 2 ]
5 108 6
8 256 12
9 360 14

10 500 22

44.00%

16 2048 640 512
32 16384 3072 2560 1920
64 131072 16384 14336 7680

31.25% 80.00%
18.75% 83.33%
12.50% 87.50%

72 186624 20736 13824 9600 11.11% 66.67%

128 1048576 81920 49152 40960 7.81% 60.00%
150 1687500 114300 84300 41640 6.77% 73.75%
192 3538944 202752 129024 92160 5.73% 63.64%

200 4000000 222400 142400 99968

5.56% 64.03%

250 7812500 390500 215500 171820 5.00% 55.19%

256 8388608 393216 262144 163840

4.69% 66.67%

320 16384000 665600 460800 256000

4.06% 69.23%

512 67108864 2097152 1572864 655360 3.13% 75.00%

640 | 131072000 3358720 2211840 1126400
750 | 210937500 4921500 3346500 1546820

2.56% 65.85%
2.33% 68.00%

1024) 536870912| 10485760 4718592 3014656

1081344 1.95% 45.00%

Figure 6: Traffic costs and cost ratios with two-, three-, four-, five-, and six-level divisions.

The experiment results are shown in Figure 6. The experiment implements the heuristic multi-
level division algorithm outlined in Figure 5. The left half of the table are the total traffic costs
when the whole mesh undergoes 2-, 3-, ..., up to 6-level divisions. The numbers of levels the whole
mesh can be divided into increases rather slowly as mesh size increases. For example, when N is
under 10, the mesh can be divided into at most 2 levels. When N is between 16 and 750, a 4-level

division can be worked out. It is not until N = 1024 can we obtain a 5- and 6-level division.

The right half of the table shows the ratio of total costs as hierarchy levels grow. For example,
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column “3L/2L" is the ratio of the 3-level total cost versus 2-level total cost. The smaller the ratio,
the more benefit we gain (in terms of less traffic load) by adding one more level of hierarchy. We
can observe that ratios in the “2L/1L” column are consistently much smaller than in all subsequent
columns. The data display the pattern that is in accord with the earlier analytical conclusion: the
most remarkable, biggest drop in traffic load occurs when the mesh undergoes its first hierarchical
division, from no hierarchy to a 2-level structure. The improvement can always be observed as
further division takes place. However, the benefits it gains by adding more levels is no comparison
to that of 2L/1L.

3.2 Simulation with non-unified traffic loads

We evaluated the proposed scheme’s performance by simulating realistic traffic loads. That is, we
abandon the assumption of unit data transfer among nodes. In the simulation, we assign variable

units of data to be transferred to the central node. See an example of 4 X 4 mesh in Figure 7.
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Figure 7: (a) One-level traffic flow. “6/2” means 6 units of data need to travel distance 2; (b)
Level-one submeshes, and the corresponding data amount/distance; (¢) The level-two mesh and

the corresponding data amount/distance.

Figure 7 (a) shows the non-leveled structure, with the darker node being the center. For the
numbers “p/q” in each node, p represents the amount of data to be transferred (normalized in a

scale of 1 to 10), and ¢ is the distance to the center. Then for this particular example, the total
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amount of data that have flown over the transfer channels would be:

Y opxg=(6x2)+(1x1)+(6x2)+(Bx3)+---+(2x4) =143
all p,q

Figure 7 (b) shows a 2-level hierarchy of the network. The four darker nodes are level-1 masters.
With this division, the “¢” number now is the distance to a node’s level-1 master. Figure 7 (c)
shows the level-2 mesh that consists of the 4 level-1 master nodes with the upper-left being the
master (and therefore the final “central” node of the network). Note that for non-unified data
transfer among nodes, a two-level hierarchy cannot guarantee traffic reduction for all instances
for the given example, the center node has a relatively large amount of data (9), and needs not to
be moved in non-hierarchical structure, but needs to be moved around in a two-level hierarchy,
incurring more communication costs. Indeed, in the given example, the total communication
cost for 2-level structure would be 217 (79 at level-one, 138 at level-two), bigger than the non-

hierarchical approach.

However, a crucial, whereas very practical premise for the hierarchical approach is that in many
applications, not all of the original data need to be transferred to the central node. They could
be partially or even entirely processed by their local master nodes. Under this premise, we assign
a data-reduction rate for all local master nodes. This reduction rate, denote p, represents an
average percentage of data amount collected by a local master, that is sent to the central node.
For the example in Figure 7 again, the amount of data collected at the four local masters are
23, 26, 17, and 13, respectively. If p = 90%, then the amount of data transferred to central
node (assuming the upper-left node to be the central node) are 26 x p = 23.4, 17 x p = 15.3,
and 13 x p = 11.7, respectively. In the example of Figure 7, when p = 90%, the 2-level scheme
still incurs more communication cost than the non-hierarchical approach. For the hierarchical
structure to outperform its non-hierarchical counterpart, the value of p must not be higher than
46%. In other words, for this particular example, the hierarchical approach will benefit those
applications of which at least 54% of the data (on average) can be processed by local master

nodes.

We introduce the notion of threshold for quantifying the performance of a hierarchical network:
a threshold of a hierarchical network, denoted u, is a data-reduction rate at which the hierarchical
structure starts to outperform its non-hierarchical counterpart. When p = p, the ratio of 2-level /1-
level total costs (the 2L/1L value) is 1. Obviously, the higher the u, the better the hierarchy’s
performance. We have done simulations to see the relationship between mesh size and u. The
simulation results are shown in Figure 8 and Figure 9. Figure 8 depicts the 2L/1L ratios when
adopting various p’s. The submesh size is an integer that is close to /2N and can divide N. For
comparison, the 2L./1L ratio using unit transfer is also shown (the bottom “analytical” curve).

(The unit transfer assumption was used when obtaining the ¥/2N submesh size.) From Figure 8,
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we can see that when p = 90% and mesh size N is not sufficiently large (< 30), the 2L./1L ratio is
above 100%. That means the hierarchical scheme does not pay off when the average transfer rate
is too high (> 90%) and N too small. With p = 90% and a larger N, the 2L/1L ratio stays around
100%, but shows a tendency of going down as N gets larger. With a p not as high as 90% (say
85%, 80%, 70%, ...), the 2L /1L ratios are all below 100%, meaning the system will benefit from
the hierarchical scheme. Also, all curves show the tendency of going down as N increases. That
means the larger the mesh size, the more the system benefits from hierarchy, and the incurring

overhead pays off better.

Fignre 9 shows a direct relationship between the mesh size N and the 2-level hierarchy threshold
. It can be observed that when N is relatively small, y is relatively low, which means that
hierarchy will benefit only if a relatively large amount of data (between 20% to 50%) can be
“absorbed” by the submesh masters. However, when N gets larger (say > 70), the threshold
quickly approaches, and stabilizes in between 95% and 100%. That means for large meshes, to
benefit from hierarchy, submesh masters only have to absorb less than 5% of data collected in
their corresponding submeshes. In other words, even if 95% or more submesh data is transferred

to the central node, 2-level approach still can outperform its unleveled counterpart.

3.3 Simulation with random data aggregation

We also simulated the scenario of variable, random reduction rates across all submeshes. Instead
of assigning same reduction rate to all submeshes, we randomly assigned 50% to 90% reduction
rates to submeshes and observed the resultant average 2L/1L ratios. The findings of the simulation

are shown in the chart of Figure 10.

Drawn in Figure 10 is the average result of 100 assignments of random p’s (between 50% and
90%) among all submeshes. One can see that for relatively small N (say < 30), the 2L/1L ratios
are higher than 80%. As N grows, however, the 2L /1L ratios stays in the neighborhood of 80%,
and shows a tendency of slowly going down as N becomes very large. Interpreting the simulation
result: we can expect about 80% 2L/1L ratio if we adopt the ¥/2N submesh size, and the data-
reduction rate among all submeshes are between 50% and 90%. We can expect slow lowering of

ratio as NN increases.

3.4 Simulation with submesh size smaller than /2N

In all simulations reported in preceding subsections, we used the submesh size we obtained an-
alytically: a factor of N in the closest neighborhood of v2N. With unified transfer load at all
levels, this submesh size would effect the theoretical minimal overall traffic load in the 2-level

hierarchical mesh. The preceding subsections presented simulation results of using this submesh
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size in a variety of more realistic scenarios. The simulation results show that using this submesh
size will bring about noticeable reduction in network traffic load, and the hierarchical scheme is

a worthwhile undertaking, especially when the original mesh is large.

It was discovered during the simulation, however, that the traffic load reduction brought about
by the hierarchy using the analytically optimal submesh size does not necessarily translate into
an absolutely minimal traffic load. The simulation results adopting submesh size smaller than
V2N is illustrated in Figure 11.

Thresholds for Various Submesh Sizes

1.02

The 3rd smaller
submesh size x3

0.98 4

0.96

0.94

The 2nd smaller
submesh size x2

0.92
The 1st smaller
submesh size x1

Threshold

0.9
Theoretical
submesh size x
0.88
QO 0O 0O QO O W N O ® OO WY T T T N O T NO OO T W 0N T
O N © v < O = < O O < W =« < M = < 0 O M N 0 = ¢ © O N & © O N
— - AN NN MMM Y Y YW@ MNDNMNDNMMNMN®O®Q®OOOSO OO O
=]
N

Figure 11: Thresholds for submesh sizes smaller than 2N.

In Figure 11, the thresholds for four different submesh sizes are shown. Recall that a threshold
is such a pivotal data-reduction rate p at the level-2 mesh, that with this p the 2L /1L ratio starts
to get lower than 100%. We have used u to denote this particular p. A high g means that
the 2-level scheme can outperform its non-leveled counterpart with a high p (i.e., for the 2-level
scheme to be beneficial, the level-2 mesh only need to absorb a very small portion of the data
from submeshes). Hence the higher the u, the better the hierarchy’s performance. In Figure 11,
the bottom curve of the four is the threshold as the function of original size using the theoretically
derived submesh size z, which is a factor of N in the closest neighborhood of ¥/2N.
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Going up, the first curve above the bottom one is the threshold function using submesh size
x1, which is the next factor of N smaller than x. The second curve above the bottom one is
the threshold function using submesh size x9, which is the next factor of N smaller than ;.
And so on. We can observe that the threshold curve gets raised as submesh size gets smaller,
although the gain is quite small. This means that with non-uniform traffic loads, the theoretically
ideal submesh does not necessarily effect the absolutely minimum traffic. Submeshes smaller than
2 X 2z could do better. An intuitive explanation for this observation can be given by referring to

Figure 12.

=

X X

Figure 12: With non-uniform traffic loads, submeshes smaller than z x 2 could yield slightly

higher thresholds.

The cases of small and large submeshes are shown in Figure 12. The thick arrows represent
the internal-submesh, full-scale communication to the submesh center node. The thin arrows
represent communication at the higher level, which is of a reduced load. In the case of small
submesh, full-scale loads travel shorter distance to its center than in large submesh. That is, in
a load’s journey to the final center, a smaller portion of it is with the full load, and a bigger
portion is with reduced load. In the case of large submesh, it’s the other way around. This kind

of distribution of loads eventually yields a slight gain in threshold.

That is not to say, however, that the smaller the submesh size, the better. This is because in a
larger submesh, the local center node controls more nodes than in a smaller submesh. This will
enable the local center to better aggregate local data, giving a better chance to lower the data-
reduction rate, and eventunally lower the overall traffic in the hierarchical network. (For insight,
assume hypothetically that the submesh is reduced to contain just one node. Then obviously
there is no possibility to do any data-reduction — all data have be transferred at the higher
level.) So a balance has to be struck between the submesh size and the threshold it could bring
about. Considering that the original 2 (the closest factor of N in neighborhood of ¥/2N) produces
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noticeable reduction in traffic in all simulated scenarios, and the threshold gains by N’s smaller
factors are quite small, we can assert that x can be a leading candidate for submesh size when

constructing a 2-level hierarchical mesh.

4 Conclusion

We presented a host of experimental results in an effort to establish the practical relevance of
the mesh hierarchy scheme proposed in [21]. The scenarios simulated are multi-level hierarchy,
realistic, non-unified network loading, random data aggregation rates, and submesh sizes other
than in the closest neighborhood of ¥2N. Through these simulations we hope to get better
understanding of the nature of hierarchical meshes, and hopefully help shed more light on the
understanding of hierarchical networks in general. The simulation results have shown that the
analytically obtained hierarchy scheme works well for many realistic settings. They also offer some
useful insights, which are obscnred in the process of theoretical calculation, into the proposed hier-
archy scheme. From simulation outcome, we can conclude that for a hierarchical mesh-structured
network, a good candidate for submesh size is the factor of N in the closest neighborhood of
V2N, where N x N is the original mesh dimensions. Even though this particular submesh size is

eventually not adopted, it could serve as an appropriate starting point.

Although the hierarchical scheme in this work was proposed with specific context (e.g., the
master node of the network performing a task involving data from the all nodes), the approaches
developed may be applied to a broader range of hierarchical control/computational problems
in distributed processing. Since optimizing network performance using hierarchical levels is a
commonly adopted approach in practice, experimental measurements of improvement on real

machines/networks would be useful to show the usefulness of this strategy.
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