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It has been known that an n-dimensional hypercube (n-cube for short) can
always embed a Hamiltonian cycle when the n-cube has no more than n&2
faulty links. In this paper, we study the link-fault tolerant embedding of a
Hamiltonian cycle into the folded hypercube, which is a variant of the hyper-
cube, obtained by adding a link to every pair of nodes with complementary
addresses. We will show that a folded n-cube can tolerate up to n&1 faulty
links when embedding a Hamiltonian cycle. We present an algorithm, FT�
HAMIL, that finds a Hamiltonian cycle while avoiding any set of faulty links
F provided that |F |�n&1. An operation, called bit-flip, on links of hyper-
cube is introduced. Simple yet elegant, bit-flip will be employed by FT�HAMIL
as a basic operation to generate a new Hamiltonian cycle from an old one
(that contains faulty links). It is worth pointing out that the algorithm is
optimal in the sense that for a folded n-cube, n&1 is the maximum number
for |F | that can be tolerated, F being an arbitrary set of faulty links. � 2001
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1. INTRODUCTION

The hypercube structure is a well-known interconnection model. As a topology
for the interconnection of a multiprocessor system, it has been proven to possess
many attractive properties, and multiprocessor computers built with hypercube
structure have been in existence for a long time [3�5, 8]. Because of its importance,
fault-tolerant computing for hypercube structures has been the focus of extensive
research. A very important property of a hypercube is its ability to embed, or
emulate, many commonly used structures such as rings, arrays, and trees. It has
been known that a regular n-dimensional hypercube can embed a Hamiltonian
cycle in the presence of up to n&2 faulty links [6]. That is, for an n-dimensional
hypercube (which has 2n nodes), we can always find a cycle traversing each and
every node exactly once, using only nonfaulty links no matter how the faulty links
are distributed, provided that there are no more than n&2 faulty links.
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Since its introduction, many variants of the hypercube have been proposed [1,
2, 7]. One variant that has aroused the interest of many researchers is the folded
hypercube, which is an extension of the hypercube, constructed by adding a link to
every pair of nodes that are the farthest apart, i.e., two nodes with complementary
addresses. The folded hypercube has been proven to be able to improve the system's
performance over a regular hypercube in many measurements [1]. Later, a more
generalized kind of folded hypercube, enhanced hypercube, was proposed [9]. It has
been shown that these extra links noticeably increase the hypercube's performance
in many aspects [9, 10].

This paper studies the link-fault tolerance of the folded hypercube with respect to
Hamiltonian cycle embedding. Being able to embed a Hamiltonian cycle in an
interconnection network is very important. Many communication tasks (such as
multicasting and broadcasting) rely on the establishment of a path that traverses
every node. Since a folded hypercube shows performance improvement over a
regular hypercube in many aspects, we are interested in knowing whether it can
tolerate more faulty links when embedding a Hamiltonian cycle. As will be shown
in the paper, a folded n-cube can tolerate up to n&1 faulty links when it embeds
a Hamiltonian cycle. A succinct algorithm will be presented that finds a Hamiltonian
cycle while avoiding any set F of faulty links provided that |F |�n&1. The algorithm
is optimal in the sense that for a folded n-cube, n&1 is the maximum number for |F | that
can be tolerated��since every node has n+1 links connected to it, if n faulty links were
allowed and all of them emanated from one node, there would be no Hamiltonian cycles.

It is worth pointing out that the added links in the folded hypercube were not
introduced only for the purpose of increasing fault tolerability. Rather, many
improvements are observed due to these added links [1, 9]. The result of this paper
just reveals another good feature (and the algorithm to get it) of the folded hyper-
cube, in addition to all the known ones. The rest of this paper is organized as
follows. In Section 2, we give formal descriptions of regular and folded hypercubes.
Section 3 has five subsections. Section 3.1 presents algorithm HAMIL that generates an
initial Hamiltonian cycle. In Section 3.2, we introduce an operation called bit-flip that
generates a new Hamiltonian cycle from an old one (that contains faulty links). Bit-flip
will be employed by FT�HAMIL as a basic operation. Sections 3.3 and 3.4 describe
algorithm FT�HAMIL that produces a Hamiltonian cycle in a folded n-cube,
tolerating up to n&1 faulty links. Section 3.5 is a brief summary of 3.3 and 3.4.
Section 4 gives some concluding remarks. Finally, a correctness proof for algorithm
FT�HAMIL is provided in the Appendix.

2. PRELIMINARIES

An n-dimensional hypercube, n-cube for short, can be represented as an undirected
graph G(V, E) such that V consists of 2n nodes, addressed (numbered) from 00 } } } 0

n

to 11 } } } 1
n

, and a link (or edge) e=[vi , vj] # E iff vi and vj have exactly one bit

different. Thus, each node has immediate links with exactly n other nodes. It can
easily be shown that |E|=n2n&1.
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FIG. 1. A folded 3-cube and a folded 4-cube, in which links in skip set S are represented with
dashed lines.

To uniquely represent a link e, note that the two nodes linked by e have exactly
one bit different. Therefore e can be denoted using the two nodes it links: If vi=
bn . .bk . .b1 , vj=bn . .b� k . .b1 (where bl # [0, 1], l=1, ..., n), and e=[vi , vj], then we
denote e as bn . .bk+1xbk&1 . .b1 . We call bn . .bk+1 xbk&1. .b1 a link of dimension-k,
or dim-k for short. There are 2n&1 links in each dimension.

A folded hypercube is a regular hypercube augmented by adding more links
among its nodes. More specifically, a folded n-cube is obtained by adding a link
between two nodes whose addresses are complementary to each other; i.e., for a
node whose address is b1 b2 } } } bn , it now has one more link to node b� 1b� 2 } } } b� n , in
addition to its original n links. So a folded n-cube has 2n&1 more links than a
regular n-cube. We call these augmented links skips, to distinguish them from
regular links, and use S to denote the set of skips. So the complete link set of a
folded hypercube can be expressed as E _ S. Figure 1 shows a 3-dimensional and a
4-dimensional folded hypercube.

In this paper, we study the problem of link-fault tolerant embedding of Hamiltonian
cycles into folded hypercubes. We will show that in terms of Hamiltonian cycle
embedding, the folded hypercube also outperforms its regular counterpart, in
addition to many known improvements. It will be established that a folded n-cube
can tolerate up to n&1 faulty links when it embeds a Hamiltonian cycle. We will
propose an elegant algorithm that finds a Hamiltonian cycle while avoiding any set
F of faulty links provided that |F |�n&1. The algorithm is also optimal because for
a folded n-cube, n&1 is the maximum number for |F | so that F can be tolerated.

3. FINDING A HAMILTONIAN CYCLE IN FOLDED n-CUBES
WITH FAULTY LINKS

3.1. Generating Initial Hamiltonian Cycle

For the purpose of our algorithm, we list the n2n&1 links of an n-cube in a
specific pattern; i.e., the n2n&1 are listed in n columns, with column i containing all
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links of dim-i. The first column lists the 2n&1 links in the following ``increasing''
order:

000 } } } 00x

000 } } } 01x

....................

111 } } } 11x

n

The i th column, 2�i�n, is obtained by left-rotating one bit, including the x-bit,
for all links in the (i&1)th column. For example, the listing of all links of a 5-cube
is

dim-5 dim-4 dim-3 dim-2 dim-1

x0000 0x000 00x00 000x0 0000x
x0001 1x000 01x00 001x0 0001x
x0010 0x001 10x00 010x0 0010x
x0011 1x001 11x00 011x0 0011x
x0100 0x010 00x01 100x0 0100x
x0101 1x010 01x01 101x0 0101x
x0110 0x011 10x01 110x0 0110x
x0111 1x011 11x01 111x0 0111x
x1000 0x100 00x10 000x1 1000x
x1001 1x100 01x10 001x1 1001x
x1010 0x101 10x10 010x1 1010x
x1011 1x101 11x10 011x1 1011x
x1100 0x110 00x11 100x1 1100x
x1101 1x110 01x11 101x1 1101x
x1110 0x111 10x11 110x1 1110x
x1111 1x111 11x11 111x1 1111x

To construct a Hamiltonian cycle in a fault-free n-cube, we make use of an
algorithm called REMOVAL(k), initially introduced in [11]. REMOVAL selec-
tively deletes k2n&1 (k�n&2) links from an n-cube, so that the remaining (n&k) 2n&1

links induce a subgraph of the n-cube that is symmetrically structured and (n&k)-
connected. It turns out that when k=n&2, the remaining 2 } 2n&1=2n links
construct a Hamiltonian cycle. Since we use REMOVAL exclusively with k=n&2
to induce a Hamiltonian cycle, we rename it as HAMIL in this paper. HAMIL
takes as input the complete link set, listed in n columns as shown above. The 2n&1

links in a column are referred as the first link, second link, etc., in top-down order.

548 DAJIN WANG



Algorithm HAMIL

[Purpose: Remove (n&2) 2n&1 links from an n-cube
to induce a Hamiltonian cycle]

Input: The complete link set of n-cube listed in n columns
Output: The remaining 2n links forming a Hamiltonian cycle

for ( j=1 to n&2)
[

at column j,
for i=1 to 2n& j&1

[ remove the i th link ]

at column j+1,
for i=2n& j&2+1 to 2n&2

[ remove the i th link ]

at column j+1,
for i=2n&2+1+2n& j&2 to 2n&1

[ remove the i th link ]
] �* end�for *�

Applying HAMIL to a 4-cube and a 5-cube, respectively, the Hamiltonian link sets
generated by HAMIL are shown below. Figure 2 shows the Hamiltonian cycle
HAMIL generated for the 4-cube. A proof that this algorithm works correctly for
an n-cube of any n can be found in [11].

4-cube 5-cube

dim-4 dim-3 dim-2 dim-1 dim-5 dim-4 dim-3 dim-2 dim-1

x000 0x00 x0000 0x000
x001 x0001
x010 x0010
x011 x0011
x100 0x10 00x1 100x x0100
x101 01x1 101x x0101
x110 110x x0110
x111 111x x0111

x1000 0x100 00x10 000x1 1000x
x1001 01x10 001x1 1001x
x1010 010x1 1010x
x1011 011x1 1011x
x1100 1100x
x1101 1101x
x1110 1110x
x1111 1111x
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FIG. 2. Hamiltonian cycle induced from a 4-cube.

Algorithm HAMIL gives one specific Hamiltonian cycle embedding for a regular
n-cube. It is the starting point of our procedure to find a Hamiltonian cycle in a
folded n-cube, avoiding any set F of faulty links provided that |F |�n&1. Let this
``starting'' link set forming a Hamiltonian cycle be denoted H0 . If H0 & F=<, then
our job is done.

However, if H0 & F{<, we need to find another Hamiltonian link set that
avoids all links in F. The rest of this section describes an algorithm, FT�HAMIL,
that finds a Hamiltonian link set using only good regular links if F contains at most
n&2 regular links, or using good regular and skip links if F contains n&1 regular
links.

3.2. Obtaining New Hamiltonian Cycle via Bit-flip

We show in this subsection that by a simple operation, which we call bit-flip, on
all the links, we can readily get a new Hamiltonian link set from an old one. Bit-flip
will serve as the basic operation in our algorithm.

If we take the complement of a specific bit over all node addresses, we get a new
addressing for an n-cube. (Exchanging any two bits over all nodes also gives a new
addressing. By a simple induction on n we can show that there are altogether n! 2n

different ways to address an n-cube.) We call this operation bit-flip.
A similar operation can be defined on the links of an n-cube, in which we take

the complement at a specific bit-position i for links of all dimensions except dim-i
(links of dim-i have x at bit-i). In this paper, bit-flip is always performed on links
unless pointed out otherwise. We use BF(i) to denote a bit-flip at bit-i.

It turns out that bit-flip can effectively specify a new Hamiltonian link set from
an old one. To illustrate the idea, observe the result of bit-flipping on H0 . In Fig. 3,
3a shows H0 , 3b is the result of BF(1) on H0 , and 3c is the result of BF(4) on 3b.

It can be seen from Fig. 3b that the effect of BF(1) is to move up the two dim-2
links, and move down the two dim-3 links of H0 (``switch'' the links along dim-1),
so that a new Hamiltonian cycle is produced. If H0 is known to contain faulty links
in dim-2 or dim-3 (i.e., links 00x1, 01x1, 0x00, and 0x10), the new Hamiltonian
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FIG. 3. (a) H0 from a 4-cube. (b) The effect of BF(1) on (a). (c) The effect of BF(4) on (b).
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cycle apparently avoids them. Likewise, in Fig. 3c, the effect of BF(4) is as if to
switch the links along dim-4, so that a new Hamiltonian cycle is generated.

Bit-flip will be used as the basic operation in our algorithm to find a Hamiltonian
cycle while avoiding faulty link set F in a folded n-cube, provided |F |�n&1. As
mentioned earlier, embedding a Hamiltonian cycle into a link-faulty regular n-cube
was considered before. In [6], an algorithm using the Gray Code concept was
proposed to find a Hamiltonian cycle avoiding up to n&2 faulty links. However,
the algorithm we will present in the following subsections, using operation bit-flip,
is much simpler. Moreover, with only minor modification, it can be adapted to find
a Hamiltonian cycle avoiding up to n&1 faulty links in a folded n-cube.

We classify F into two cases and treat them in separate subsections. In Section
3.3, we consider the case of |F & E|�n&2; i.e., the regular link set contains at most
n&2 faulty links, and if |F |>n&2, the remaining faulty links must belong to the
skip set S. In this case, we can always find a fault-avoiding Hamiltonian cycle so
that the cycle uses only regular links. In Section 3.4, we consider the case of |F & E|
=n&1; i.e., all faulty links fall into the regular link set. In this case, we can find
a fault-avoiding Hamiltonian cycle that uses both regular links and skips.

3.3. |F & E|�n&2

We can always assume that |F & E|=n&2, and the algorithm we present in this
subsection will find a Hamiltonian cycle avoiding all links in F. Furthermore, the
fault-avoiding Hamiltonian cycle uses only regular links. For an F such that
|F & E|<n&2, this algorithm obviously also works.

Let Fi=[faulty links in dim-i], 1�i�n, and let fi=|Fi |. Then clearly

Fi & Fj=< if i{ j and :
n

i=1

fi=n&2.

It is known that there are n! 2n different ways to address an n-cube. Figure 4
shows the eight different addressings of 2-cube. It can be seen that the dimension
assignment of links varies as the node addressing varies.

Before generating Hamiltonian cycle H0 using HAMIL, we first reassign dimen-
sions to all links. Since there are n&2 faulty (regular) links, there will be at least

FIG. 4. All eight addressings of 2-cube.
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two dimensions that do not contain any faulty links. So we can always address the
folded n-cube, i.e., assign dimensions to links, in such a way that

f1= fn=0; (3.3-1)

0� f2� f3� } } } � fn&1�n&2. (3.3-2)

What (3.3-1)�(3.3-2) mean is that we want dimensions 1 and n to contain no faulty
links, dimension (n&1) to contain the largest number of faulty links, and dimension
2 the smallest number of faulty links. The purpose for this dimension reassignment
will be explained in the proof of the algorithm.

After the preceding dimension reassignment, we apply algorithm HAMIL to
generate Hamiltonian cycle H0 . If H0 is already free of faulty links, then we are
done. However, if H0 contains some (up to n&2) faulty links, we start the procedure
described below to find a fault-free Hamiltonian cycle.

We name the algorithm FT�HAMIL, standing for FaultTolerant�HAMILtonian.
The procedure repeatedly generates a new Hamiltonian cycle Hi+1 from an old one Hi ,
so that some (at least one) faulty links present in Hi are avoided in Hi+1 . The
procedure terminates the first time a fault-free Hamiltonian cycle is attained.
Termination of the procedure is guaranteed because the number of repetitions is
limited by the number of faults.

Algorithm FT�HAMIL

[Purpose: Find a Hamiltonian cycle in a folded n-cube avoiding all (up to n&2) regular
faulty links, the resulting Hamiltonian cycle consists of only regular good links]

Input: Hamiltonian cycle H0 with faulty links present
Output: A fault-free Hamiltonian cycle consisting of only regular links

bf [1 . .n]: An array of flags. A bit-flip can be performed at bit-i only if bf [i]=``unflipped ''

begin: for (h=n, n&3, ..., 2, 1) �* Initialization of array bf *� (1)
bf [h] � ``unflipped ''

for (h=n&1, n&2) (2)
bf [h] � ``flipped ''

i � 0 �* Starts with H0 *� (3)

while: while (Hi contains faulty links) (4)
[

for ( j=n&1, n&2, ..., 3, 2) (5)
[

if (Hi contains faulty links in dim- j ) (6)
[

k � j&1 (7)
while (bf [k]{``unflipped '') �* Find an ``unflipped'' bit k *� (8)

if (k&1)>0)[k � k&1]
else [k � n]

Hi+1 � BF(k) on H i �* New Hamiltonian cycle generated *� (9)
bf [k] � ``flipped '' �* BF will not be performed at this bit again *� (10)
i � i+1 (11)
goto while (12)

]
] �* end�for *�

] �* end�while *�
return Hi �* Hi a fault-free Hamiltonian cycle consisting of only regular links *� (13)
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We will go over the algorithm for an example of a folded 6-cube with five faults,
where four of those faults are on regular links. A correctness proof for FT�HAMIL
is provided in the Appendix.

Example. Suppose the four faulty links are 010x10, 00x010, 0x1000, and 0x1111.
So f2=0, f3=1, f4=1, and f5=2. A faulty link will be represented by placing a
box around it. Initially,

6 5 4 3 2 1
bf=

unflipped flipped flipped unflipped unflipped unflipped

and H0 contains faulty links 0x1000 and 010x10:

dim-6 dim-5 dim-4 dim-3 dim-2 dim-1

x00000 0x0000

x00001

x00010

x00011

x00100

x00101

x00110

x00111

x01000

x01001

x01010

x01011

x01100

x01101

x01110

H0= x01111 .

x10000 0x1000 00x100 000x10 0000x1 10000x
x10001 01x100 001x10 0001x1 10001x
x10010 010x10 0010x1 10010x
x10011 011x10 0011x1 10011x
x10100 0100x1 10100x
x10101 0101x1 10101x
x10110 0110x1 10110x
x10111 0111x1 10111x
x11000 11000x
x11001 11001x
x11010 11010x
x11011 11011x
x11100 11100x
x11101 11101x
x11110 11110x
x11111 11111x
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According to the algorithm, the first fault encountered is in dim-5 (0x1000), and the
first ``unflipped'' k�4 is 3, so a BF(3) is performed on H0 , and the result sent to
H1 . The updated bf and H1 are shown below:

6 5 4 3 2 1
bf=

unflipped flipped flipped flipped unflipped unflipped

dim-6 dim-5 dim-4 dim-3 dim-2 dim-1

x00000 00x000

x00001 01x000

x00010

x00011

x00100

x00101

x00110

x00111

x01000 0x0100

x01001

x01010

x01011

x01100

x01101

x01110

H1= x01111 .

x10000 000x10 0000x1 10000x

x10001 001x10 0001x1 10001x

x10010 010x10 0010x1 10010x

x10011 011x10 0011x1 10011x

x10100 0100x1 10100x

x10101 0101x1 10101x

x10110 0110x1 10110x

x10111 0111x1 10111x

x11000 0x1100 11000x

x11001 11001x

x11010 11010x

x11011 11011x

x11100 11100x

x11101 11101x

x11110 11110x

x11111 11111x
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H1 contains faulty link 010x10 in dim-3. The first ``unflipped'' k�2 is 2. A BF(2)
is performed on H1 , and the result sent to H2 . The updated bf and H2 are shown
below:

6 5 4 3 2 1
bf=

unflipped flipped flipped flipped flipped unflipped

dim-6 dim-5 dim-4 dim-3 dim-2 dim-1

x00000 000x00

x00001 001x00

x00010 010x00

x00011 011x00

x00100

x00101

x00110

x00111

x01000 00x010

x01001 01x010

x01010

x01011

x01100 0x0110

x01101

x01110

H2= x01111 .

x10000 0000x1 10000x

x10001 0001x1 10001x

x10010 0010x1 10010x

x10011 0011x1 10011x

x10100 0100x1 10100x

x10101 0101x1 10101x

x10110 0110x1 10110x

x10111 0111x1 10111x

x11000 11000x

x11001 11001x

x11010 11010x

x11011 11011x

x11100 0x1110 11100x

x11101 11101x

x11110 11110x

x11111 11111x
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H2 contains faulty link 00x010 in dim-4. The first ``unflipped'' k�3 is 1. A BF(1)
is performed on H2 , and the result sent to H3 . The updated bf and H3 are shown
below:

6 5 4 3 2 1
bf=

unflipped flipped flipped flipped flipped flipped

dim-6 dim-5 dim-4 dim-3 dim-2 dim-1

x00000 0000x0

x00001 0001x0

x00010 0010x0

x00011 0011x0

x00100 0100x0

x00101 0101x0

x00110 0110x0

x00111 0111x0

x01000 000x01

x01001 001x01

x01010 010x01

x01011 011x01

x01100 00x011

x01101 01x011

x01110 0x0111

H3= x01111 .

x10000 10000x

x10001 10001x

x10010 10010x

x10011 10011x

x10100 10100x

x10101 10101x

x10110 10110x

x10111 10111x

x11000 11000x

x11001 11001x

x11010 11010x

x11011 11011x

x11100 11100x

x11101 11101x

x11110 0x1111 11110x

x11111 11111x
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Finally, H3 contains faulty link 0x1111 in dim-5. The only ``unflipped'' k left is 6.
BF(6) is performed on H3 . We arrive at the fault-tree H4 :

dim-6 dim-5 dim-4 dim-3 dim-2 dim-1

x00000 00000x
x00001 00001x
x00010 00010x
x00011 00011x
x00100 00100x
x00101 00101x
x00110 00110x
x00111 00111x
x01000 1000x0 01000x
x01001 1001x0 01001x
x01010 1010x0 01010x
x01011 1011x0 01011x
x01100 100x01 1100x0 01100x
x01101 101x01 1101x0 01101x
x01110 10x011 110x01 1110x0 01110x

H4= x01111 1x0111 11x011 111x01 1111x0 01111x .

x10000

x10001

x10010

x10011

x10100

x10101

x10110

x10111

x11000

x11001

x11010

x11011

x11100

x11101

x11110

x11111 1x1111

3.4. |F & E|=n&1

If all n&1 faulty links are regular links, i.e., |F & E|=n&1, then FT�HAMIL as
described in Section 3.3 may not work. For example, if H4 in the example of Section
3.3 still contains a faulty link, then BF at any bit will not produce another totally
new fault-free cycle��some links that were ``switched out'' in a previous BF opera-
tion may be ``switched back.''

Since all n&1 faulty links are regular links, we have F & S=<; i.e., all skips are
fault-free. With a slight change in dimension assignment, we can still make use of
FT�HAMIL to produce a fault-free Hamiltonian cycle that uses all skips, and
avoids all faulty links in E.

558 DAJIN WANG



Now that there are n&1 faulty regular links (and no faulty skips), there will be
one dimension that contains no faulty links at all. We can always assign dimensions
to links with the following distribution of faults:

f1=0; (3.4-1)

0� f2� f3� } } } � fn&1� fn�n&1. (3.4-2)

Note that because dim-n contains the largest number of faulty links,

0� f2� f3� } } } � fn&1�n&2 (3.4-3)

still holds.
With this dimension assignment, we apply algorithm HAMIL, followed by

FT�HAMIL. Because of (3.4-3), the result Hj , 1� j�(n&2), will be a Hamiltonian
cycle that contains no faulty links in dim-2 through dim-(n&1), but still contains
fn faulty links in dim-n. For example, H2 may look like the following:

dim-6 dim-5 dim-4 dim-3 dim-2 dim-1

x00000 000x00

x00001 001x00

x00010 010x00

x00011 011x00

x00100

x00101

x00110

x00111

x01000 00x010

x01001 01x010

x01010

x01011

x01100 0x0110

x01101

x01110

H2= x01111 .

x10000 0000x1 10000x
x10001 0001x1 10001x
x10010 0010x1 10010x
x10011 0011x1 10011x
x10100 0100x1 10100x
x10101 0101x1 10101x
x10110 0110x1 10110x
x10111 0111x1 10111x
x11000 11000x
x11001 11001x
x11010 11010x
x11011 11011x
x11100 0x1110 11100x
x11101 11101x
x11110 11110x
x11111 11111x
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In Fig. 5, we redraw the three 4-cube-induced Hamiltonian cycles from Fig. 3,
with dim-4 links drawn with dashed lines. It can be observed that dim-4 links play
a special role: In all Hamiltonian cycles, all dim-4 links are used, and they appear
alternatively in a cycle (i.e., all non-dim-4 links are connected only to dim-4 links).
This observation is also true for a general n-cube. That is also the reason why
FT�HAMIL cannot ``switch out'' any faulty links of dim-n��all of them are needed
in forming a Hamiltonian cycle.

Proposition 3.1. In all Hamiltonian cycles generated with HAMIL and then
FT�HAMIL, all dim-n links will be used, and they appear alternatively in the cycles.

Proof. We only have to show that in all Hamiltonian cycles generated by
HAMIL and FT�HAMIL, (1) every link in dim-i, 1�i�n&1, is connected with
two links in dim-n; and (2) for any two links a of dim-i and b of dim-j, 1�i< j
�n&1, a and b will not be connected.

(1) A link generated by HAMIL and then FT�HAMIL in dim-i has the general
format bn . .bi+1xbi&1 . .b1 . The two nodes linked by it are then bn . .bi+10bi&1 . .b1

and bn . .b i+11b i&1 . .b1 . However, node bn . .bi+10bi&1b1 is connected with dim-n
link x . .bi+10b i&1 . .b1 and node bn . .b i+11b i&1 . .b1 is connected with dim-n link
x . .bi+1 1bi&1 . .b1 .

When FT�HAMIL uses bit-flip to generate H1 , H2 , etc., the links in dim-n
remain unchanged. The above argument still holds.

(2) Observe H0 , generated by HAMIL.

i=1: A link a of dim-1 has ``1'' at dimension n, but all links b in dim-j,
2� j�n&1, have ``0'' (the complementary value of ``1'') at dimension n. Therefore
a and b will not connect to a common node.

2�i�n&2: A link a of dim-i has ``1'' at dimension i&1, but all links b in dim-j,
i+1� j�n&1, have ``0'' at dimension i&1. Therefore a and b will not connect to
a common node.

Since algorithm FT�HAMIL uses bit-flip, the complementary property at each
dimension (bit position) will be preserved. Therefore, for H1 , H2 , etc., (2) still holds.

K
Now, if we remove all dim-4 links in Fig. 5, and add all skips, we can still get

Hamiltonian cycles, in which all skips appear alternatively in the cycles. The three
Hamiltonian cycles that use no dim-4 links but all of the skips are shown in Fig. 6.

Since |F & E|=n&1, there are no faulty skips. HAMIL and FT�HAMIL can
generate a fault-free Hamiltonian cycle using good links in dim-1 through dim-(n&1),
and all skips.

3.5. Summary

From the discussion of 3.3 and 3.4, the final algorithm to find a link-fault-free
Hamiltonian cycle in a folded n-cube can be summarized as follows:

560 DAJIN WANG



FIG. 5. Three Hamiltonian cycles induced from a 4-cube.

FIG. 6. Three Hamiltonian cycles that use no dim-4 links but all skips.
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If ( |F & E|�n&2) �* less than n&1 regular links are faulty *�
[

1. assign dimensions to links so that
f1= fn=0, and 0� f2� f3� } } } � fn&1�n&2

2. perform HAMIL
3. perform FT�HAMIL
[ producing a Hamiltonian cycle using only good regular links ]

]
else �* ( |F & E|=n&1), n&1 regular links are faulty *�
[

1. assign dimensions to links so that
f1=0, and 0� f2� f3� } } } � fn&1� fn�n&1

2. perform HAMIL
3. perform FT�HAMIL
4. remove all dim-n links and add all skip links
[ producing a Hamiltonian cycle, using good regular links in dim-1 through

dim-(n&1) and using all skips ]
]

4. CONCLUSION

This paper studied the link-fault tolerability of the folded hypercube with respect
to Hamiltonian cycle embedding. It has been shown that a folded n-cube can
tolerate n&1 faulty links when embedding a Hamiltonian cycle, whereas its regular
counterpart is known to be able to tolerate n&2 faulty links. A succinct algorithm
FT�HAMIL was presented that finds a Hamiltonian cycle in a folded n-cube in the
presence of up to n&1 faulty links regardless of their distribution. For a folded
n-cube, n&1 is the maximum number of faulty links that can be tolerated��if n
faulty links were allowed, and all of them were incident on the same node, there
would be no Hamiltonian cycles.

APPENDIX

Proof for FT�HAMIL. We prove by explaining the purpose of each statement
of FT�HAMIL.

Statements (1) and (2). Observe H0 from the example in Section 3.3. It can be
generalized that BF(n&1) and BF(n&2) do not produce any new link set, because
a new set will be produced by BF(i) only if at some dimension, bit-i are all ``1'' or
all ``0.'' (For example, the links in dim-1 are all ``1'' at bit-6. Therefore BF(6)
produces a new link set, but at bit-5 and bit-4, links in all columns have both ``1''
and ``0.'' Therefore BF(5) and BF(4) will not produce a new link set.) So we exclude
bit-(n&1) and bit-(n&2) for BF operations. That is the purpose of line (2).

Statement (3) is self-evident.
Statement (4). Start of the while loop. In each round of the loop, at least one

faulty link of Hi is avoided by BF(k) at some bit-k. If there is no faulty link in
Hi , FT�HAMIL terminates.
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Statement (5). Check, in each dimension of links, to see if there are any faulty
links. If there are any faulty links in a dim-j, statements (7) through (12) are carried
out.

Note that the number of dimensions affected by BF(i) varies as i varies. For
example, for H0 , BF(1) will switch links in dim-2, 3, 4, and 5; while BF(3) will
switch links only in dim-4 and 5. To generalize,

BF(n) will switch links in dim-1, 2,..., (n&2), (n&1); (A-1)

BF(n&1) and BF(n&2) do not switch links in any dimension: (A-2)

For all i�(n&3), BF(i) will switch links in dim-(i+1), (i+2), ..., (n&1). (A-3)

That is to say, if a faulty link ef is found in dim-j, then to ``switch out'' ef , a BF
must be performed either at a bit-k such that k� j&1 or at bit-n.

Statements (7) and (8). Based on above reasoning, if dim-j contains a faulty link,
find an unflipped bit-k, so that BF(k) will switch the links in dim-(k+1), ...,
j, ..., (n&1).

Statement (9). The BF(k) operation. A new Hamiltonian cycle is generated that
does not use the faulty link found in dim-j.

Statement (10). Bit-k is marked as ``flipped'' so that any future BF will not be
performed at bit-k. This guarantees that for any k, BF(k) will be performed at most
once. This way, every BF performed will produce a really new link set over all��a
``switched out'' faulty link in a previous BF will never be ``switched back'' in any
future BF. Since there are n&2 bits marked as ``unflipped'' initially, FT�HAMIL
will perform at most n&2 BF 's.

Statements (11) and (12). Statements (6) through (10) produced a new Hamiltonian
cycle Hi+1 , avoiding at least one faulty link found in H i . Statements (11) and (12)
prepare for the next round of loop.

Finally, we explain the purpose of dimension reassignment, i.e., why we want to
readdress the folded n-cube in such a way that

f1= fn=0; (A-4)

0� f2� f3� } } } � fn&1�n&2. (A-5)

From (A-1)�(A-3), we can see that

Links of dim-1 will get switched with only BF(n); (A-6)

Links of dim-2 will get switched with only BF(1) and BF(n); (A-7)

Links of dim-3 will get switched with BF(1), BF(2), and BF(n); (A-8)

} } }

Links of dim-(n&3) will get switched with BF(1), ..., BF(n&4), and BF(n); (A-9)
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Links of dim-(n&2)will get switched with BF(1), ..., BF(n&3), and BF(n); i.e.,
every BF performed will switch dim-(n&2) links; (A-10)

Links of dim-(n&1) will also get switched with every BF
performed: BF(1), BF(2), ..., BF(n&3), BF(n). (A-11)

What (A-7) implies is that if there are more than two faulty links in dim-2, we may
not be able to switch them all out. In the worst case, BF(1) will switch one faulty
link out, BF(n) will switch another faulty link out. The third faulty link will not be
switched out by any other BFs, so dim-2 should contain at most 2 faulty links.
Similarly, by (A-8), dim-3 should contain at most 3 faulty links, etc. To generalize,

dim-i should contain at most i faulty links, 2�i�(n&2); (A-12)

dim-(n&1) should contain at most (n&2) faulty links. (A-13)

If faulty links are distributed so that (A-4)�(A-5) are satisfied, then dim-i will
contain at most w(n&2)�(n&i)x faulty links, 1�i�(n&1), but

\n&2
n&i �<i

always holds when 1�i�(n&2), satisfying (A-12). When i=n&1,

\n&2
n&i �=(n&2),

satisfying (A-13). K
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