
The Journal of Supercomputing, 20, 203–216, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Low-Cost Fault-Tolerant Structure
for the Hypercube
DAJIN WANG e-mail: wang@pegasus.montclair.edu

State Key Laboratory for Novel Software Technology at Nanjing University,
Nanjing 210093, China; and Department of Computer Science, Montclair State University,
Upper Montclair, New Jersey 07043

Abstract. We propose a new, low-cost fault-tolerant structure for the hypercube that employs spare
processors and extra links. The target of the proposed structure is to fully tolerate the first faulty node,
no matter where it occurs, and “almost fully” tolerate the second, meaning that the underlying hyper-
cube topology can be resumed if the second faulty node occurs at most locations—expectantly 92% of
locations. The unique features of our structure are that (1) it utilizes the unused extra link-ports in
the processor nodes of the hypercube to obtain the proposed topology, so that minimum extra hard-
ware is needed in constructing the fault-tolerant structure and (2) the structure’s node-degrees are low
as desired—the primary and spare nodes all have node-degrees of n + 2 for an n-dimensional hyper-
cube. The number of spare nodes is one fourth of primary nodes. The reconfiguration algorithm in the
presence of faults is elegant and efficient. The proposed structure also effectively enhances the diagnos-
ability of the hypercube system. It is shown that the diagnosability of the structure is increased to n+ 2,
whereas an ordinary n-dimensional hypercube has diagnosability n.

Keywords: diagnosability, fault tolerance, hypercubes, interconnection networks, redundant systems

I. Introduction

The hypercube is one of the most investigated interconnection networks for mul-
ticomputer systems. It outperforms many of its counterparts in terms of regular-
ity, computational power, communication ability measured by such factors as inter-
node distance, diameter, traffic density and so on. An extensively studied topic about
hypercube-structured system is its reliability—the ability to perform its intended
tasks in the presence of faulty processors. When some processor nodes in the sys-
tem become faulty, one of the two general approaches will be taken—without or
with spare processors.
Many fault-tolerant schemes take the first approach, which is to manage to carry

out the original task without using the faulty nodes and the communication links
connected to these nodes. The reconfigured network using this approach will result
in a different network, i.e., an “incomplete” hypercube. The original underlying
topology is not preserved. While it may not affect the computational abilities for
some applications, it can be expected that its performance will be discounted as the
result of losing its original topology. Most work on hypercube tolerance concentrate
on fault-tolerant routing, since routing is among the most basic issues for multicom-
puters. Recent work on fault-tolerant hypercube routing includes [9–11, 19]. In [9],
a concept called routing capability was introduced, which is basically the information

204 wang

a node maintains about how far it is from faulty nodes in the hypercube. A routing
algorithm was presented that makes use of routing capability to facilitate efficient
fault-avoiding routing of messages. Also for the purpose of fault-tolerant routing,
Kaneko and Ito [11] proposed the notion of full reachability. A fully reachable node
is a node that can be reached by all fault-free nodes of Hamming distance h via
a path of length h. Based on nodes’ full reachability, a fault-tolerant routing algo-
rithm was developed, which improved the ones proposed earlier by Chiu and Wu in
[10]. The safety vector notion proposed in [19] effectively includes faulty link infor-
mation and provides more accurate information about the distribution of faults in
a hypercube. Each node in a hypercube is associated with a bit vector, called a
safety vector, calculated by information exchange among neighboring nodes. Rout-
ing algorithm using safety vector was presented, so that an optimal routing between
two nodes can be guaranteed if the kth bit of the safety vector of the source node
is set, where k is the Hamming distance between the source and destination nodes.
All preceding referenced schemes assume that the systems have no spare pro-

cessors to replace faulty ones. The alternative fault-tolerance approach is to add
spare nodes and links to the original system. When faulty nodes occur, the spares
will be activated to replace the faulty nodes in such a way that the original topol-
ogy can be completely preserved. Such a fault-tolerant system is said to be strongly
fault-tolerant. Although sparing the system costs more, it is a preferable choice if
the preservation of the original structure topology and computational power are a
crucial consideration. In [20], Yang et al. presented an interesting strongly fault-
tolerant hypercube architecture, which is constructed by interconnecting a set of
basic fault-tolerant modules (FTM’s). Each FTM is composed of a subhypercube
with a fixed number of spare nodes, links, and some reconfiguration switches. The
FTM’s are interconnected in such a way that the spare nodes cannot only replace
faults in their own FTM, but can also replace the faults in other FTM’s. The sys-
tem has been shown to be robust and outperform previously proposed modular
fault-tolerant hypercube systems. However, the fault-tolerant architecture proposed
in [20] needs specially fabricated FTM’s. Earlier, a strong fault-tolerant scheme was
proposed in [5]. But the work was mainly concentrating on fault-tolerant meshes.
In this paper, we propose a fault-tolerant hypercube that needs very little hard-

ware support and achieves satisfactory strong fault-tolerance. The uniqueness of
this structure is that it makes use of the unused extra link-ports in the processor
nodes of the hypercube to obtain the proposed topology so that (1) minimum extra
hardware is needed in constructing the fault-tolerant structure, and (2) the struc-
ture’s node-degrees are very low: for an n-dimensional hypercube, the proposed
topology requires a node-degree of n + 2. In real systems using hypercube topol-
ogy, the processors are usually made with the maximum allowable link-ports for
scalability. It is quite often that not all these ports will be used in the hypercube of
the system. This motivates the idea of utilizing the unused ports to improve the sys-
tem’s performance. Extra links between nodes can be introduced. It has been shown
that such enhanced hypercubes can achieve considerable improvements over regu-
lar hypercubes in many measurements such as mean internode distance, diameter,
traffic density [17], and diagnosability [18]. Our proposed structure takes advantage
of these “left-over” ports to achieve fault-tolerance. We will employ spare nodes

a low-cost fault-tolerant structure for the hypercube 205

and add interconnection links via the unused extra link-ports. Since the required
node-degree is n+ 2, two extra link-ports will be used in each node for construct-
ing the fault-tolerant hypercube. The hardware support for fault-tolerance is kept
at minimum, since the extra link-ports are previously manufactured. If there is one
faulty node, no matter where it occurs, the hypercube topology can be fully recov-
ered. If two nodes become faulty, the second faulty node can be recovered with
very high probability (around 0.92).
The rest of this paper is organized as follows. In Section II, we give the necessary

background and define the terminology. In Section III, we first describe the pro-
posed fault-tolerant hypercube, and then explicate the node replacement strategy
and reconfiguration algorithm when faults occur. In Section III, we also compute
the system’s recoverability and do a brief cost analysis of our system, comparing
its hardware requirement with other similarly conceived systems. In Section IV, we
prove that the proposed system is �n+ 2�-diagnosable. We give concluding remarks
in Section V.

II. Preliminaries

The n-hypercube is one of the most popular interconnection models for multicom-
puter systems, where n is the dimension of the hypercube. Graphically speaking,
an n-hypercube can be viewed as a graph G = �V�E� such that V consists of 2n

nodes, numbered from 00 · · · 0︸ ︷︷ ︸n
to 11 · · · 1︸ ︷︷ ︸n

. An edge (or link) �vi� vj� ∈ E, where
vi� vj ∈ V , if and only if vi and vj have only one bit different. The nodes represent
processors in the system, and the links represent communication channels among
processors. Thus, every node has links with exactly n other nodes. There are alto-
gether n2n−1 links. Two nodes vi� vj of an n-hypercube that have d bits different are
said to have Hamming distance d, denoted as H�vi� vj� = d. So in an n-hypercube,
a link exists between vi and vj if and only if H�vi� vj� = 1. Notice that the nodes
can be numbered differently as long as the above link regulation is obeyed. We will
call n-hypercube simply n-cube for the sake of convenience. n-cube as a topology
to interconnect processors has many attractive properties. Multicomputer systems
built with hypercube structure have already been commercially available for a long
time. Because of its importance for achieving high performance, the fault-tolerant
computing for hypercube structures has been the interest of many researchers [3–7,
13, 15, 20].
An n-cube is composed of two �n − 1�-cubes. We call the two �n − 1�-cubes

the subcubes of the n-cube. Recursively, an n-cube is composed of 2n−i subcubes of
dimension i. We represent a subcube of dimension i with notation bn · · · bi+1 x · · ·x︸ ︷︷ ︸i

,
which is composed of all nodes whose most significant n− i bits are bn · · · bi+1. An
example showing an n-cube and some of its subcubes is given in Figure 1.
The fault-tolerant structure proposed in this paper employs extra nodes and links

among nodes. We call the nodes (or links) of an original n-cube primary nodes (or
links), and call the extra nodes (or links) spare nodes (or links). Sometimes we will
just say primary or spare if the context makes it clear whether we mean nodes or

206 wang

Figure 1. A 4-cube and its subcubes.

links. When a primary node becomes faulty, a spare will be chosen to replace it, and
a reconfiguration, which may involve replacement of many spare nodes and links,
will take place to restore the n-cube structure. Given the available spare nodes and
links, if a faulty node can be replaced so that the original n-cube topology can be
completely restored, then the faulty node is said to be strongly tolerated. In this
paper we always seek strong tolerance of faulty nodes. Given the available spare
nodes and links, if a faulty node can be tolerated no matter where it occurs, then
the current system is said to be able to fully tolerate a fault. If a faulty node can be
tolerated only when it occurs at some specific locations, then the current system is
said to partially tolerate a fault. A node location is said to be a recoverable location if
after the node’s failure, the remaining nodes (with links among them) can still form
a hypercube. Clearly, all spares are at recoverable locations because the original
hypercube does not need any of them. We define the recoverability of a system,
denoted α, by

α = number of nodes at recoverable locations
total number of primaries and spares

For a fully tolerant system, α = 1. When the system cannot tolerate any more fault,
α = 0. An ideal system should fully tolerate a large number of faulty nodes. But
this cannot be done without very high hardware costs. The system proposed in this
paper can fully tolerate the first faulty node, and tolerate the second faulty node
with very high α (expectantly approaching 0.92 as n grows). It cannot tolerate the
third faulty node.
It has been a long-standing approach for a multicomputer system to diagnose the

faulty processors among themselves. The first paper to propose this approach by
Preparata et al. dates back to 1967 [14]. In their model, the self-diagnosable system
is represented by a directed graph G = �V�A�, or digraph for short, in which a node
vi can test all nodes vj if arrow �vi → vj� ∈ A. An undirected graph G = �V�E� is
a special case of a digraph G = �V�A� in which �vi → vj� ∈ A ⇐⇒ �vj → vi� ∈ A.

a low-cost fault-tolerant structure for the hypercube 207

In our hypercube system, the two connected nodes are able to test each other
directly, so the interconnection topology and testing assignment graph are the same.
The test-result will be a conclusion that the tested node is “faulty” or “fault-free,”
denoted as label 1 or 0 on the corresponding arrow. A syndrome is defined as a
function s A → �0� 1�. A subset F ⊆ V is said to be consistent with a syndrome s
if s can arise from the circumstance that all nodes in F are faulty and all nodes in
V − F are fault-free. For a given syndrome s, there maybe more than one subset
of V that are consistent with s. If this happens, the system cannot diagnose for
syndrome s, because the faulty-sets that can cause s are not unique. It is clear that
for any system to perform self-diagnosis, there must be some (at least one) fault-
free processors. The diagnosability is defined to be a positive integer t such that
if �F � > t, the diagnosis cannot be carried out correctly. It is well-known that the
diagnosability of an n-dimensional hypercube is n [1]. For the variants of hypercube,
diagnosability has been a constant subject of research. The enhanced hypercube, for
example, where there are 2n−1 more links than the plain hypercube, increases the
diagnosability to n + 1 [18]. In this paper, we will show that our proposed fault-
tolerant hypercube increases the system’s diagnosability to n+ 2.

III. The proposed fault-tolerant hypercube structure

A. The basic redundant cube

The basic “building block” of the proposed fault-tolerant hypercube is a redundant
3-cube. The 3-cube has 2 spare nodes, denoted as S0 and S1, respectively. Spare
S0 has 4 links to primary nodes 001, 010, 100 and 111. Spare S1 is connected with
the remaining nodes: 000, 011, 101 and 110. The two spares are connected by a
link, too. Figure 2 shows the redundant 3-cube. It can be seen that the 4 primary
nodes connected to the same spare all have Hamming distance of 2 between each
other, and the structure is symmetrical. If any of the 8 primaries becomes faulty,
it can be replaced by one of the spares. Without loss of generality we will assume
000 is the first node that goes bad. (Since the structure is symmetrical, if any other
node goes bad first, the discussion is the same.) When node 000 goes faulty, spare

Figure 2. A basic redundant 3-cube.

208 wang

Figure 3. Reconfiguration after the first fault. The bold links represent the restored 3-cube after 000
becomes faulty.

node S0 will take its place. The 3 (now failed) links from 000 to 001, 010 and 100
will be replaced by three corresponding links from S0 and the original topology is
completely restored. See Figure 3. For the remaining 7 primaries, not every node
going faulty can be restored. However, 4 of them can be restored by the second
spare S1. Figure 4 shows the reconfigurations after 001 or 010 or 100 or 111 becomes
second fault, respectively.
So for the redundant 3-cube, the first fault has the recoverability α1 = 1. For the

second fault,

α2 =
4 primaries + 1 spare �S1�

9
≈ 0�56

For i ≥ 3, αi = 0, i.e., the third, fourth� � � � � faulty nodes are unrecoverable.

B. The proposed fault-tolerant structure

Using this basic redundant 3-cube, we can build up a fault-tolerant hypercube
of any size in the following way. The whole system consists of 2n−3 basic redun-
dant 3-cubes, where n ≥ 3. The basic cubes are addressed from 00 · · · 0︸ ︷︷ ︸n−3

xxx to
11 · · · 1︸ ︷︷ ︸n−3

xxx. The two spares for bn−3bn−4 · · · b1xxx are denoted bn−3bn−4 · · · b1S0

Figure 4. Reconfiguration after the second fault: (a), (b), (c) and (d) give the restoration if node 001
or 010 or 100 or 111 is the second faulty node, respectively.

a low-cost fault-tolerant structure for the hypercube 209

Figure 5. (a) A redundant 4-cube. (b) A redundant 5-cube in which the primary links between basic
cubes are not shown.

and bn−3bn−4 · · · b1S1. The primary nodes between different basic cubes are con-
nected in a regular n-cube manner. The spares are connected in a similar way:
Two spares are linked if and only if their addresses have exactly one bit different.
All spares themselves form a �n − 2�-cube. For the purpose of further enhancing
recoverability, we add 4 more extra links between a basic unit’s primary nodes: Two
nodes that have Hamming distance 3 are connected by an extra link. Figure 5 gives
example redundant 4-cubes and 5-cubes.
Both a primary and a spare have the low node-degree of n+ 2, which is a desired

property. A primary has the original n links, 1 link to a spare, and 1 extra link to
a primary that is 3 Hamming distance away. A spare has 5 links within the basic
cube it belongs to, and n− 3 links to other cubes. All spares form an �n− 2�-cube
by themselves.

C. The reconfiguration algorithm

In the worst case, the proposed fault-tolerant hypercube can recover up to two faulty
nodes. The pattern in which the two faults occur can be (1) both are primary nodes;
(2) first primary, second spare; (3) first spare, second primary. We will separately
discuss the reconfiguration strategy for each pattern. We do not discuss the trivial
case, i.e., both faults are spare nodes, since no reconfiguration is needed if no
primaries are failing.

C-1. Both faulty nodes are primary nodes. Without loss of generality we can assume
that node 00 · · · 0︸ ︷︷ ︸n−3

000 is the first to become faulty. Spare 00 · · · 0︸ ︷︷ ︸n−3
S0 will replace

it with the corresponding 3 links. What is more, to easily and quickly facilitate a
complete restore, all S0 spares in other cubes replace the 000 nodes even though
they are not faulty. The replaced good 000 nodes will now become spares for the
second faulty node. We now analyze which nodes can be recovered as the second
faulty, and how they are recovered.

210 wang

Figure 6. (a) Reconfiguration after 00000 becomes faulty first. (b) Reconfiguration after 11010 becomes
faulty second. The bold links are activated spare links. The dashed links are good but inactivated.

First, any node whose least 3-bits are 001 or 010 or 100 or 111 can be recovered
with spare S1 in a way similar to what we showed for the basic cube. Just like in
the case of first faulty, we replace the corresponding nodes in all cubes with their
S1’s, so that the recovery process is easy and quick. Figure 6 shows an example
reconfiguration after 00 · · · 0000 is the first faulty node and 11 · · · 1010 is the second.
It can be seen that the original topology can be completely recovered, preserving
all the computational power.
If the second faulty is a node whose least 3-bits are 011 or 101 or 110, and it

does not fall in the same basic cube as the first faulty, then the hypercube topology
still can be recovered, but in a weaker way, meaning that some direct links may
have to be replaced by longer paths. Pick, say, 11 · · · 1011 as the second faulty. (For

Figure 7. Reconfiguration 00000, 11011 become the first and second faulty node, respectively. The light
bold links are paths replacing the originally direct links 01011–00011 and 10011–00011.

a low-cost fault-tolerant structure for the hypercube 211

11 · · · 1101 or 11 · · · 1110, the discussion is similar.) The good but replaced 000-node
will be used as the spare in the following way. Refer to Figure 7. The 3 nodes that
011-node links to are 010-, 001- and 111-nodes. They are all linked to 000-node.
Therefore 000-node can replace 011-node within the basic cube. For all the cubes
except that of the first fault, the preceding replacement is carried out. In the cube
of first fault, this replacement cannot be done because the 000-node in that cube
is faulty. Thus, for inter-basic-cube connections, if the connection involves the cube
of first fault, there should be a link between the 000-node in one cube (e.g., 01xxx
in Figure 7) and the 011-node in the other (00xxx in Figure 7). The length 3 path
to replace such a link is as follows:

01000 −→ 01S1 −→ 00S1 −→ 00011�

Similarly, from 10000 to 00011 we have:

10000 −→ 10S1 −→ 00S1 −→ 00011�

It can be seen that there will be a communication delay due to the second fault
occurring at 011- or 101- or 110-node.
If the second fault is a node whose least 3-bits are 000, then since its function

already has been replaced by S0 when recovering the first fault, nothing has to be
done.
To summarize the preceding discussion: The first faulty node can be completely

recovered no matter where it occurs, and without loss of generality it can be viewed
as numbered 00 · · · 0000; if the second fault occurs at a node (in any basic cube)
whose least 3-bits are 001 or 010 or 100 or 111, it can also be completely recovered;
if the second fault occurs at a node whose least 3-bits are 011 or 101 or 110, and it
does not fall in the same basic cube as the first fault, then it can still be recovered
with some communication being delayed by a factor of 3; if the second fault is a
node whose least 3-bits are 000, no recovery operation is needed. The nodes that
cannot be recovered as the second fault include S0 nodes in all basic cubes, and
the three nodes in the basic cube of the first fault with least three bits 011 or 101
or 110.
The recoverability of the first fault α1 = 1. To calculate the recoverability for the

second fault: After the first fault is out of consideration, the total number of nodes
of the structure is 2n + 2 · 2n−3 − 1; the number of nodes that cannot be recovered
is 3+ 2n−3. So, the recoverability of the second fault

α2 =
�2n + 2 · 2n−3 − 1� − �3+ 2n−3�

2n + 2 · 2n−3 − 1
= 9 · 2n−3 − 4

10 · 2n−3 − 1
�

which approaches 0.9 even for a relatively small hypercube.

C-2. First fault primary, second fault spare. The operation to recover the first pri-
mary fault is the same as in C-1. We again assume that the first fault is 00 · · · 000.
Then all S0’s have been used in recovering 00 · · · 000. So if the second (spare) fault
is some S0, it cannot be recovered. If instead, the second (spare) fault is some S1,

212 wang

then no recovery operation is needed, and the original hypercube topology is com-
pletely preserved.
The recoverability of the second fault α2 in this case is also �9 · 2n−3 − 4�/

�10 · 2n−3 − 1�.

C-3. First fault spare, second fault primary. Suppose the first fault is 00 · · · 0︸ ︷︷ ︸n−3
S0.

No reconfiguration is needed when this occurs. But we have lost the spare node for
primary nodes 00 · · · 0︸ ︷︷ ︸n−3

000� 00 · · · 0︸ ︷︷ ︸n−3
011� 00 · · · 0︸ ︷︷ ︸n−3

101 and 00 · · · 0︸ ︷︷ ︸n−3
110. So

when one of these four nodes becomes the second fault, it cannot be recovered.
For any 001-, 010-, 100-, or 111-node becoming the second fault, it can be recov-

ered by replacing it with its S1, and replacing the same node in all other blocks with
S1’s. In any block except that of first fault, a 000-, or 011-, or 101-, or 110-node
becoming the second fault can be recovered by replacing it with its S0, and replac-
ing the same node in all other blocks, except that of first block, with S0’s. Because
00 · · · 0︸ ︷︷ ︸n−3

S0 has been faulty, the replacement cannot be effected in this block. This
will result in link-delay in a handful of nodes. Suppose without loss of generality
that a 000-node in some block other than that of first fault is the second fault. Then
all 000-nodes are replaced with S0’s except v0 = 00 · · · 0︸ ︷︷ ︸n−3

000. So v0 remains func-
tioning. But its communication with n − 3 neighboring S0’s will be delayed by a
factor of 3. For instance, v0’s link to 00 · · · 1︸ ︷︷ ︸n−3

S0 will now be via path

v0 −→ 00 · · · 0︸ ︷︷ ︸
n−3

S1 −→ 00 · · · 1︸ ︷︷ ︸
n−3

S1 −→ 00 · · · 1︸ ︷︷ ︸
n−3

S0�

The only nodes that cannot be recovered as the second fault are the 4 nodes in
the block of first fault. Hence the second fault’s recoverability

α2 =
�2n + 2 · 2n−3 − 1� − 4

2n + 2 · 2n−3 − 1
= 10 · 2n−3 − 5

10 · 2n−3 − 1
�

which approaches 1 quickly as n grows.

We now calculate the expected recoverability E�α2� for the second faulty node.
Let P�A� represent the probability for event A. Then

Ppp = P�first primary, second primary� = 2n

2n + 2n−2
· 2n − 1
2n + 2n−2 − 1

�

Pps = P�first primary, second spare� = 2n

2n + 2n−2
· 2n−2

2n + 2n−2 − 1
�

Psp = P�first spare, second primary� = 2n−2

2n + 2n−2
· 2n

2n + 2n−2 − 1
�

Pss = P�first spare, second spare� = 2n−2

2n + 2n−2
· 2n−2 − 1
2n + 2n−2 − 1

�

a low-cost fault-tolerant structure for the hypercube 213

We have

E�α2� = �Ppp + Pps� ·
9 · 2n−3 − 4
10 · 2n−3 − 1

+ �Psp + Pss� ·
10 · 2n−3 − 5
10 · 2n−3 − 1

= 0�8 · 9 · 2n−3 − 4
10 · 2n−3 − 1

+ 0�2 · 10 · 2
n−3 − 5

10 · 2n−3 − 1
�

E�α2� approaches 0.92 as n grows.

D. Cost

Besides the spare nodes, the only hardware needed to construct our proposed sys-
tem are extra links since we are supposed to make use of the leftover link-ports
previously fabricated. We will first calculate the total number of links needed for
our spared n-cube and then compare with other fault-tolerant n-cubes. In our
proposed system, all nodes are of degree n + 2, and there are 2n + 2n−2 nodes
in total. Thus

∑
v∈V degree�v� = �n + 2��2n + 2n−2�. By fundamental graph the-

ory, for an undirected graph G = �V�E��∑v∈V degree�v� = 2�E�. We get �E� =
�n+ 2��2n + 2n−2�/2 = �5n+ 10�2n−3. Among them, the original n-cube has n2n−1

links; every basic 3-cube has another four “crossing” links, totaling 4 · 2n−3; the 2n−2
spares form an �n− 2�-cube themselves, thus having �n− 2�2n−3 links; finally, each
pair of spares in a basic 3-cube has 8 links to primaries, totaling 8 · 2n−3.
To see that our hardware requirement is a very modest one, let’s see what

other proposed systems need. First of all, our system needs no specially fabri-
cated reconfiguration switches as were used by the systems proposed in [20] and
[8]. In a comparative study in [20], it was shown that the system of [20] requires the
least number of links among similar systems. A system proposed in [20] requires
�2n�2m +p� +m2m�2n−m links, where n is the dimension of the hypercube, m is the
dimension of FTM, and p is the number of spare nodes in each FTM. Thus, a sys-
tem of [20] withm = 3 and p = 2 has exactly the same number of nodes as ours. The
total number of links in such a system is �2n�23 + 2� + 3 · 23�2n−3 = �20n+ 24�2n−3.
The links our system takes are only about one fourth of that number.

IV. The diagnosability of the proposed structure

In this section we will show that, in addition to its fault-tolerating capability, the
proposed structure also achieves better diagnosability than a plain hypercube. More
specifically, we will prove that the whole system’s diagnosability is increased to n+ 2
for a fault-tolerant n-cube, whereas the diagnosability of an ordinary n-cube is given
in the following lemma.

Lemma 1 �1� 12�. A system of n-cube structure is n-diagnosable if n ≥ 3.

There are several different ways to characterize a t-diagnosable system. In our
proof, we will use the characterization by Allan et al. [2] and Sullivan [16].

214 wang

Definition 1 Let G = �V�E�. For a subset V ′ ⊂ V , the tester-set of V ′, denoted by
µ−1V ′, is defined as

µ−1V ′ = �v�v ∈ V and �v� v′� ∈ E for some v′ ∈ V ′� − V ′�

Lemma 2 �16�. A system G = �V�A� is t-diagnosable if and only if

∀V ′ ⊆ V �V ′ �= φ ⇒ �V ′�
2

+ �µ−1V ′� > t��

Theorem 1 The proposed fault-tolerant n-cube is �n+ 2�-diagnosable.

Proof: We prove the theorem by showing that for any non-empty subset V ′ of V ,
�V ′ �
2 + �µ−1V ′� > n + 2 will be satisfied. Then by Lemma 2, the system is �n + 2�-
diagnosable.

Case 1� V ′ contains only primaries.
Without considering the V ′’s additional testers due to the spare nodes and extra

links, we have �V ′ �
2 + �µ−1V ′� > n by Lemmas 1 and 2. Without loss of generality we

can always assume v0 = 0 · · · 0000 ∈ V ′.

Case 1�1� v1 = 0 · · · 0111 ∈ V ′. Then µ−1V ′ will have 2 more nodes, 0 · · · 0S0
(testing v0) and 0 · · · 0S1 (testing v1). Therefore we have �V ′ �

2 + �µ−1V ′� > n+ 2.

Case 1�2� v1 = 0 · · · 0111 �∈ V ′. Then µ−1V ′ will also have 2 more nodes,
0 · · · 0S0 and v1 (both testing v0). Thus we have �V ′ �

2 + �µ−1V ′� > n+ 2.

Case 2. V ′ contains only spares.
All spare nodes form an �n − 2�-cube by themselves. So by Lemmas 1 and 2,

�V ′ �
2 + �µ−1V ′� > n− 2, where µ−1V ′ only takes spares into account. Now pick any
spare v0 ∈ V ′. v0 will have four more primaries testing it. Therefore, we have �V ′ �

2 +
�µ−1V ′� > n− 2 + 4 = n+ 2.

Case 3. V ′ contains both primaries and spares.
Let V ′ = V ′

p ∪ V ′
s , where V ′

p, V
′
s is a subset of primaries and spares, respec-

tively. By Lemmas 1 and 2, we have
�V ′

p�
2 + �µ−1V ′

p� > n and �V ′
s �
2 + �µ−1V ′

s � >

n− 2, where µ−1V ′
p only contains primaries and µ−1V ′

s only contains spares. Since
µ−1V ′

p ∩ µ−1V ′
s = φ, it must follow that �V ′ �

2 + �µ−1V ′� > 2n− 2 ≥ n+ 2 for n ≥ 4,
which is a satisfied condition.

V. Conclusion

We have proposed a strong fault-tolerant hypercube structure that uses spare nodes
and links. It needs relatively very little hardware support and yet has been shown to
achieve satisfactory results: The first faulty node can be fully recovered no matter
where it occurs, the second faulty node can be recovered at over ninety percent

a low-cost fault-tolerant structure for the hypercube 215

of locations. The advantage of our proposed structure is that it makes use of the
unused extra link-ports in nodes of the hypercube to obtain the wanted topology.
Since the extra link-ports are previously manufactured, the hardware support for
obtaining fault-tolerance is minimal and the constructing process very easy. Besides
the spare nodes, the only hardware needed for constructing the proposed system
are extra links. A cost analysis shows that the total number of links of the system
is �5n + 10�2n−3, including both primary and spare links. This is about one fourth
of the links needed by an equal sized fault-tolerant hypercube structure proposed
earlier in [20].
We have also shown that the proposed structure enhances the diagnosability of

the hypercube system. It has been shown that the diagnosability of the structure is
increased to n+ 2, while an ordinary n-dimensional hypercube has diagnosability n.

References

1. J. R. Armstrong and F. G. Gray. Fault diagnosis in a Boolean n cube array of microprocessors. IEEE
Transactions on Computing, C-30(8):587–590, 1981.

2. F. J. Allan, T. Kameda, and S. Toida. An approach to the diagnosability analysis of a system. IEEE
Transactions on Computing, 24(10):1040–1042, 1975.

3. M. S. Alam and R. G. Melhem. An efficient modular spare allocation scheme and its application to
fault-tolerant binary hypercube. IEEE Transactions on Parallel Distributed Systems, 2:117–126, 1991.

4. P. Banerjee. Strategies for reconfiguring hypercube under faults. In Proceedings of the 20th Interna-
tional Symposium on Fault-Tolerant Computing, 1990.

5. J. Bruck, R. Cypher, and C.-T. Ho. Efficient fault-tolerant mesh and hypercube architectures.
In Proceedings of the 22nd International Symposium on Fault-Tolerant Computing, July 1992,
pp. 162–169.

6. J. Bruck, R. Cypher, and D. Soroker. Running algorithms efficiently on faulty hypercubes. Computer
Architecture News, 19(1):89–96, 1991.

7. J. Bruck, R. Cypher, and D. Soroker. Embedding cube-connected cycles graphs into faulty hyper-
cubes. IEEE Transactions on Computing, 43(10):1210–1220, 1994.

8. S. L. Chau and A. L. Liestman. A proposal for a fault-tolerant binary hypercube architecture. In
Proceedings of IEEE Fault Tolerant Computing, 1989, pp. 323–330.

9. G.-M. Chiu and K.-S. Chen. Use of routing capability for fault-tolerant routing in hypercube multi-
computers. IEEE Transactions on Computing, 46(8):953–958, 1997.

10. G.-M. Chiu and S.-P. Wu. A fault-tolerant routing strategy in hypercube multicomputers. IEEE
Transactions on Computing, 45(2):143–155, 1996.

11. K. Kaneko and H. Ito. Fault-tolerant routing algorithms for hypercube networks. In Proceedings
of the 13th International Parallel Processing Symposium (IPPS) and 10th Symposium on Parallel and
Distributed Processing (SPDP), April 1999, pp. 218–224.

12. J. Kuhl and S. Reddy. Distributed fault-tolerance for large multiprocessor systems. In Proceedings of
the 7th International Symposium Computing Architecture, 1980, pp. 23–30.

13. T. C. Lee. Quick recovery of embedded structures in hypercube computers. In Proceedings of the 5th
Distributed Memory Computing Conference, April 1990, pp. 1426–1435.

14. F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem of diagnosable
systems. IEEE Transactions on Electronic Computing, EC-16(12):848–854, 1967.

15. C. S. Raghavendra, P.-J. Yang, and S.-B. Tien. Free dimensions—an efficient approach to achieving
fault tolerance in hypercubes. In Proceedings of the 22nd International Symposium on Fault-Tolerant
Computing, July 1992, pp. 170–177.

16. G. F. Sullivan. A polynomial time algorithm for fault diagnosability. In Proceedings of the 25th Annual
Symposium on the Foundations of Computing Science, pp. 148–156. IEEE Computer Society, 1984.

216 wang

17. N.-F. Tzeng and S. Wei. Enhanced hypercubes. IEEE Transactions on Computing, C-40(3):284–294,
1991.

18. D. Wang. Diagnosability of enhanced hypercubes. IEEE Transactions on Computing, 43(9):1054–
1061, 1994.

19. J. Wu. Adaptive fault-tolerant routing in cube-based multicomputers using safety vectors. IEEE
Transactions on Parallel and Distributed Systems, 9(4):321–334, 1998.

20. C. S. Yang, L. P. Zu, and Y. N. Wu. A reconfigurable modular fault-tolerant hypercube architecture.
IEEE Transactions on Parallel and Distributed Systems, 5(10):1018–1032, 1994.

