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Abstract

We study the problem of determining diagnosability for incomplete hypercubes that have arbitrarily distributed

missing links, under the classic PMC diagnostic model and its variant, the BGM model. Based on the result proved in

this paper, for both models, in most cases the diagnosability of an incomplete hypercube can be determined by simply

checking the link degree of each node. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many topologies have been proposed to inter-
connect processors in a multiprocessor computer
system. Among them, the hypercube has drawn the
greatest attention. A hypercube possesses many
attractive properties and has become the most
popular architecture for multiprocessor systems.
Commercial multiprocessor systems based on
hypercube structure have already been available
[3,5,6,13]. Because of its importance for achieving
high performance, the fault-tolerant computing
for hypercubes has been the interest of many re-
searchers.

It is well known that the diagnosability of an
n-dimensional hypercube is n under the classic
PMC model [11]. That is, an n-dimensional hyper-
cube can correctly detect all faulty nodes provided
that the number of faulty nodes does not exceed n.
When the adopted fault bound is maximum, n, all
the links will be involved in the diagnosis. Algo-

rithms are available to determine the faulty pro-
cessors provided that the diagnosability of the
system is known [1,9]. We can apply diagnosis al-
gorithms only when we know the diagnosability of
the system. Having diagnosability n in an n-di-
mensional hypercube implies that all links among
nodes are functioning, i.e., there are no missing
links. It is then a natural question to ask how the
diagnosability decreases if some links are missing.
The past literature in this ®eld has seen studies of
diagnosability for hypercubes with regularly en-
hanced links [15] or regularly decreased links [17].
In this paper, we present results that establish the
diagnosability for hypercubes in the presence of
arbitrarily distributed missing links. We will give a
simple algorithm to decide the diagnosability for
incomplete hypercubes with missing links (failing,
or in use other than diagnosis).

The diagnosability of incomplete hypercubes
under a variant of PMC model, the BGM model
[2], is also studied in this paper. A simple algo-
rithm is presented that decides the diagnosability
for incomplete hypercubes under the BGM model.
As an immediate corollary of the main results in
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this part, we will show that the diagnosability of a
complete n-dimensional hypercube is also n under
the BGM model.

The rest of this paper is organized as follows. In
Section 2, we give necessary backgrounds for our
problems, de®nitions and previous results. Sec-
tion 3 is on the diagnosability of incomplete
hypercubes under PMC model and is in two parts.
The ®rst part proves the main mathematical results
our algorithm will be based on. The second part
presents the algorithm and analyzes its complexity.
Section 4 addresses the same problem for BGM
model. Section 5 gives some concluding remarks.

2. Preliminaries and previous results

In the study of multiprocessor systems, the
structure of a system is usually adequately repre-
sented by a graph G � �V ;E�, where each node
vi 2 V represents a processor and each edge
fvi; vjg 2 E represents a communication channel
between vi and vj. An n-dimensional hypercube,
n-cube for short and denoted as Qn, is a graph G �
�V ;E� such that V consists of 2n nodes, numbered

from to , and an edge (or link)

fvi; vjg 2 E if and only if vi and vj have exactly one
bit di�erent. Thus, each node has immediate links
with, and therefore can directly access to, exactly n
other nodes. It is easy to establish that jEj � n2nÿ1.
Two nodes vi; vj of an n-cube that have d bits
di�erent are said to have Hamming distance d,
denoted as H�vi; vj� � d. So in an n-cube, a link
exists between vi and vj if and only if H�vi; vj� � 1.
Fig. 1 shows a Q3 and a Q4. It can be seen that an
�n� 1�-cube is made up by two n-cubes, with node

in one n-cube being linked to in

the other. It is convenient to denote the two sub-

cubes as Q0
n � and Q1

n � , respec-

tively. Since any two nodes linked by an edge have
one and only one bit di�erent, an edge can be
uniquely represented using the two nodes it links.
If vi � bn::bk::b1, vj � bn::�bk::b1, then we use
bn::bk�1Xbkÿ1::b1 to denote edge fvi; vjg. We call
bn::bk�1Xbkÿ1::b1 an edge of dimension k. Every
node is incident to exactly n edges, one edge in
each dimension. There are totally 2nÿ1 edges in
each dimension. For instance, in a 3-cube, node
000 has 3 edges incident to it: 00X , 0X 0 and X 00.
The four edges of dimension 2 are 0X 0; 0X 1; 1X 0
and 1X 1.

Fig. 1. A 3-cube and a 4-cube.
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In the well-known PMC multiprocessor diag-
nostic model, the self-diagnosable system is rep-
resented by a directed graph G � �V ;A�, or digraph
for short, in which a node vi can test all nodes vj if
arrow �vi ! vj� 2 A. An undirected graph G �
�V ;E� is a special digraph in which
�vi ! vj� 2 A$ �vj ! vi� 2 A, meaning that two
linked nodes can perform tests on each other. We
use C�v� to represent all nodes that v can test,
Cÿ1�v� to represent all nodes that can test v. For a
subset of V 0 � V , we de®ne

CV 0 �
[
v2V 0

C�v� ÿ V 0 and Cÿ1V �
[
v2V 0

Cÿ1�v� ÿ V 0:

Regardless of the speci®c test methods, the ®nal
test result is simply a conclusion that the tested
node is ``faulty'' or ``fault-free,'' denoted as label 1
or 0 on the corresponding arrow. The PMC model
assumes that a fault-free node should always give
correct test result, whereas the test result given by
a faulty node is unreliable, i.e., it will be arbitrarily
0 or 1. The collection of all test results, called a
syndrome, can be formally de®ned as a function
s : A! f0; 1g. A subset F � V is said to be con-
sistent with a syndrome s if s can arise from the
circumstance that all nodes in F are faulty and all
nodes in V ÿ F are fault-free. It is worth pointing
out that for a given syndrome s, there may be more
than one subset of V that are consistent with s. If
this happens, the system cannot diagnose for
syndrome s, because the faulty-sets that can cause
s are not unique. It is clear that under the PMC
model, there must be some (at least one) good
processors to correctly perform diagnosis. For a
given system, the diagnosability is an integer t such
that if jF j6 t, the diagnosis can be guaranteed to
carry out correctly. Formally,

De®nition 1. A system is said to be t-diagnosable
(or has diagnosability t� if for any syndrome s,
there is one and only one faulty-subset F � V that
is consistent with s, given that the number of faulty
nodes does not exceed t.

Later, a variant of the PMC model, named
BGM model after its proposers, was introduced in
Ref. [2]. The di�erence between the two models is

the following. In the PMC model, a test result 0 or
1 from vi testing vj is reliable only if vi (the tester) is
fault-free. In other words, a 0 test result does not
necessarily mean that the tested node is fault-free.
However, in the BGM model, a test result 0 from
vi testing vj must mean that vj is fault-free. The
rationale for this assumption is that the tests are
usually complex and extensive enough so that if
either one or both of vi and vj are faulty, it is ex-
tremely unlikely that a 0 result will come about.
For the BGM model, the de®nition of diagnos-
ability is the same as in De®nition 1.

In a hypercube-structured system, two linked
processors can directly access each other and
therefore can be managed to perform tests on each
other. If G � �V ;E� represents the structure of the
hypercube system and fvi; vjg 2 E, then vi 2
Cÿ1�vj� and vj 2 Cÿ1�vi�. The testing assignment is
therefore the same as the topology of the system
structure. The following theorem gives the PMC
diagnosability of a complete n-cube, i.e., the n-cube
with all its links participating in the diagnosis.

Theorem 1 ([1,8]). A system of n-cube structure is
n-diagnosable if n P 3.

This paper is on determining the diagnosability
for an n-cube with incomplete links. The same
problem under both PMC and BGM models are
studied. There are many reasons why we should be
interested in determining the diagnosability when
some links are not participating in the diagnosis.
For example, there may be link failures in the
system. Or we may want to use only part of the
links to perform the diagnosis so that some normal
computation and fault diagnosis can be carried out
at the same time. All these scenarios require the
n-cube to diagnose in the presence of some missing
links. It is necessary for an n-cube to know its
diagnosability (which is not n anymore) before the
diagnosis takes place.

The following de®nitions and earlier results will
be used in the rest of the paper.

De®nition 2. The connectivity j�G� of a graph
G�V ;E� is the minimum number of nodes whose
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removal results in a disconnected or a trivial (one
node) graph.

Lemma 1 ([16]). j�G� � K if and only if the least
number of disjoint paths between any pair of nodes
in G is K.

Lemma 2 ([8]). There exist exactly n disjoint paths
between any two nodes in an n-cube.

Lemma 3 ([11]). Let G � �V ;E� be the graph
representation of a system such that jV j � N . The
necessary conditions for the system to be PMC
t-diagnosable are:
1. N P 2t � 1;
2. 8v 2 V �jCÿ1�v�jP t�.

Lemma 4 ([4]). Let G � �V ;E� be the graph
representation of a system such that jV j � N . The
sucient conditions for the system to be PMC
t-diagnosable are:
1. N P 2t � 1;
2. j�G�P t.

Notice that Theorem 1 can be immediately
obtained from Lemmas 1, 2 and 4.

3. Diagnosability algorithm for incomplete hyper-

cubes under PMC model

For a general digraph, establishing its
diagnosability is not easier than ®nding the faults.
The ®rst algorithm to determine the diagnosability
for an arbitrary digraph which runs in polynomial
time was proposed in Ref. [14]. The algorithm's
complexity is O�jAjjV j1:5�. Later an improved al-
gorithm was suggested in Ref. [12], which runs in
O�jV js2:5�, where s is the system's diagnosability.
In the latter algorithm, the higher the system's
diagnosability, the more running time it takes to
determine it. Since s is usually a far less number
than jAj, the algorithm of Ref. [12] outperforms
that of Ref. [14]. However, if the system is less
general, e.g. incomplete n-cube in our case, we
hope to altogether avoid using the general algo-
rithm so that higher e�ciency and simpler imple-
mentation can be achieved.

The distribution of missing links in the hyper-
cube greatly a�ects the resulting (decreased)
diagnosability. With even 1 link missing from an
n-cube, shown in Fig. 2(a), the necessary condition
in Lemma 3 cannot be satis®ed anymore, so that
the diagnosability will decrease by 1. However, if

Fig. 2. The light lines represent missing links. (a) 1 link missing, �nÿ 1�-diagnosable. (b) 2nÿ1 links missing, �nÿ 1�-diagnosable.
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more links in the same dimension are removed, the
diagnosability does not decrease further. In the
extreme case, all 2nÿ1 links in a dimension are ta-
ken away so that we have two disconnected
�nÿ 1�-cubes shown in Fig. 2(b). Even though the
system is disconnected, its diagnosability remains
nÿ 1 if n P 4 (which can be readily proved with
Lemmas 1, 2 and 4). Another example in Fig. 3: if
only 2 links incident to the same node are missing,
the diagnosability will immediately drop by 2.
However, we can have as many as 2� 2nÿ1 links
removed and the system remains �nÿ 2�-diagno-
sable.

Since there are n2nÿ1 links, there will be 2n2nÿ1

di�erent distributions of missing links. Fortu-
nately, by some properties we will reveal in this
section, in most cases, we do not have to look at
the missing links' distributions.

3.1. The foundation of the algorithm

The characterization of a t-diagnosable system
was given in Ref. [12], which our algorithm will be
based on.

Lemma 5 ([12]). A system G � �V ;A� is t-diagno-
sable if and only if

8V 0 � V V 0
�
6� / ) jV 0j

2
� jCÿ1V 0j > t

�
:

For an n-cube with complete links, the following
two lemmas are about the cardinality of test-set for
a two- and three-node subset.

Lemma 6 ([7]). For any two nodes u; v in n-cube,
jCÿ1fu; vgjP 2nÿ 2.

Lemma 7. For any three nodes u; v;w in n-cube,
jCÿ1fu; v;wgjP 3nÿ 5.

Proof. We prove the lemma by induction on n, the
dimension of hypercube.

Basis. When n is small, the claim can be checked
by inspection.
Hypothesis. The claim holds for n-cube.
Induction. Consider an �n� 1�-cube, Qn�1. Qn�1

is composed of two n-cubes Q0
n � and

Q1
n � such that each node 0bn . . . b1 in Q0

n

is linked to 1bn . . . b1 in Q1
n.

If u; v;w all fall in Q0
n, then by Hypothesis,

u; v;w have at least 3nÿ 5 testers, all in Q0
n. But

u; v;w have 3 more testers in Q1
n. Therefore

jCÿ1fu; v;wgjP �3nÿ 5� � 3 � 3�n� 1� ÿ 5.

Fig. 3. Both systems are �nÿ 2�-diagnosable. One has 2 missing links, while the other has 2� 2nÿ1 (n � 4).

D. Wang / Journal of Systems Architecture 46 (2000) 519±527 523



Suppose now u; v fall in Q0
n, w falls in Q1

n. By
Lemma 6, u; v have at least 2nÿ 2 testers, all in Q0

n.
w will bring in at least n new testers in Q1

n.
Therefore Cÿ1fu; v;wgjP �2nÿ 2� � n � 3�n� 1�
ÿ5. �

In the following theorem, d�v� denotes the de-
gree of node v. In an undirected graph,
jCÿ1�v�j � d�v�.

Theorem 2. Given an n-cube system with incomplete
links, graphically denoted as G � �V ;E�. If
minfd�v� j v 2 V g � r such that r P 3, then the
system's diagnosability is r under the PMC model.

Proof. We prove the theorem by showing that for
any non-empty subset V 0 of V , jV 0j=2� jCÿ1V 0j > r
will be satis®ed. Then by Lemma 5, the system is
r-diagnosable.

When jV 0jP 2r � 1, jV 0j=2� jCÿ1V 0j > r will
always hold. So we only have to show that the
condition is satis®ed for all the V 0s such that
jV 0j6 2r. For the sake of convenience we denote
jV 0j=2� jCÿ1V 0j as U�V 0�.

Case 1 (jV 0j � 1): For an arbitrary one-node
V 0 � fvg, since d�v�P r, we have
U�V 0� � 1=2� d�v� > r.

Case 2 (jV 0j � 2): Let V 0 � fu; vg. By Lemma 6,
jCÿ1V 0jP 2nÿ 2 for a complete n-cube. Now that
the n-cube is incomplete, some links from u and v
may be missing. Let ku (kv) be the number of
missing links from u (v). Since d�u�; d�v�P r,
ku; kv6 nÿ r must hold. Therefore
jCÿ1V 0jP �2nÿ 2� ÿ 2�nÿ r� � 2r ÿ 2. We have
U�V 0�P 2=2� �2r ÿ 2� � 2r ÿ 1 > r if r > 1.

Case 3 (jV 0j � 3): Let V 0 � fu; v;wg. By Lemma
7, jCÿ1V 0jP 3nÿ 5 for a complete n-cube. Now
that the n-cube is incomplete, some links from u; v
and w may be missing. Let ku (kv; kw) be the num-
ber of missing links from u (v;w). Since
d�u�; d�v�; d�w�P r, ku; kv; kw6 nÿ r must hold.
Therefore jCÿ1V 0jP �3nÿ 5� ÿ 3�nÿ r� � 3r ÿ 5.
So we have U�V 0�P 3=2� �3r ÿ 5� � 3r ÿ 3:5 > r
if r > 1:75.

Case 4 (46 jV 0j6 2r): Observe that the addition
of one node into V 0 will decrease the value of U�V 0�
at most by 1=2: adding one node into V 0 will in-
crease jV 0j=2 by 1=2; if this new node of V 0 has

been chosen from the old Cÿ1V 0, then the worst
case is that jCÿ1V 0j will be decreased by 1, resulting
an overall decrease of U�V 0� by 1=2. So for a V 0

such that 46 jV 0j6 2r, the lowest value we can get
for U�V 0� is

U�V 0�P �3r ÿ 3:5� ÿ �2r ÿ 3� � 1

2
� 2r ÿ 2 > r

if r > 2;

where �3r ÿ 3:5� is the least U value for the ®rst 3
nodes, and �2r ÿ 3� � 1=2 is the worst decrease of
U's value caused by additional nodes to V 0.

Summarizing the preceding four cases, U�V 0� �
jV 0j=2� jCÿ1V 0j > r when jV 0j6 2r, provided that
r P 3. For jV 0j > 2r, jV 0j=2� jCÿ1V 0j > r trivially
holds. We arrive at the conclusion that jV 0j=2�
jCÿ1V 0j > r will be satis®ed for all non-empty V 0 if
r P 3. �

We point out that 3 is the least r that is equal to
the system's diagnosability. Two example n-cube
systems with incomplete links are given in Fig. 4,
in both of which min d�v� � 2, while one is
2-diagnosable, the other is not. So for min d�v�6
2, the diagnosability cannot be simply decided just
by min d�v�. More intricate methods are in order,
which are available from earlier research [14,12].

Also notice that Theorem 2 is a more general-
ized presentation of the well-known Theorem 1.
From Theorem 2 we can immediately have the
following corollary,

Corollary 1. An n-cube system is n-diagnosable,
n P 3, under the PMC model.

3.2. The algorithm

Based on Theorem 2, and the PMC diagnos-
ability algorithm in Ref. [12], we present the
diagnosability algorithm for hypercubes with in-
complete links. Suppose the incomplete hypercube
under consideration is represented by a graph
G � �V ;E�, with V being the node set and E the
(incomplete) link set.

Step 1. For every node, acquire the number of
links incident to it that can be used for diagnostic
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task. Compute r � minf number of links incident
to v j v 2 V g.

Step 2. If r P 3, the diagnosability of the system
is r and we are done. Otherwise, goto step 3.

Step 3. r6 2. We use the PMC diagnosability
algorithm in Ref. [12] to determine the diagnos-
ability of the system.

As the manufacturing technology progresses,
the probability of link failure should continue to
drop. So it can be anticipated that in most cases of
link failure we have r P 3, meaning that the rela-
tively complex algorithm in Step 3 is rarely in-
voked.

Since the validity of Theorem 2 and the algo-
rithm of Ref. [12] has been established, the cor-
rectness of the above algorithm is self-evident. We
now analyze the algorithm's running time. Step 1
takes O�jV j� steps, supposing that each node can
determine the failing/functioning status of its links.
Step 2 is a constant operation. For Step 3, the
algorithm of Ref. [12] is bounded by O�jV js2:5�
[12], where s is the system's diagnosability. Since
s6 2 if Step 3 is reached, we have that Step 3 is
O�jV j�. Summarizing the preceding argument, the
diagnosability algorithm for incomplete hyper-

cubes has complexity O�jV j�. As we have just
pointed out, one should really anticipate r P 3 in
most cases, so that determining diagnosability,
without reaching Step 3, is a very simple process.

4. Diagnosability algorithm for incomplete hyper-

cubes under BGM model

There have existed algorithms that compute the
BGM diagnosability for a general testing system
[10,12]. The algorithm in Ref. [10] has complexity
O�jV js3�, where s is the system's diagnosability.
Raghavan and Tripathi [12] proposed an improved
algorithm that e�ected an O�jV js2= log s� com-
plexity. Just like in the case of PMC model, for a
less general system such as incomplete n-cube, we
wish to avoid using the general algorithm.

Lemma 8 ([10]). If minfjCÿ1�v�j j v 2 V g � r, then
the diagnosability under the BGM model is either r
or r ÿ 1.

Let Vr � fv j jCÿ1�v�j � rg. We de®ne a binary
relation � over Vr such that u � v

Fig. 4. (a) d�v� � 2, not 2-diagnosable (it is actually 1-diagnosable). (b) d�v� � 2 and 2-diagnosable.
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() Cÿ1�u� � Cÿ1�v�. It is obvious that � is an
equivalence relation so that it induces nodes of Vr

into several equivalence classes.

Lemma 9 ([12]). The diagnosability under the BGM
model is r ÿ 1 if and only if there exist distinct
equivalence classes A and B over Vr such that
Cÿ1Aÿ B � Cÿ1Bÿ A.

Theorem 3. Given an n-cube system with incomplete
links, graphically denoted as G � �V ;E�. If
minfd�v� j v 2 V g � r such that r P 3, then the
system's diagnosability is r under the BGM model.

Proof. We prove the theorem by showing that in
an incomplete hypercube, if minfd�v�
j v 2 V gP 3, there will be no distinct equivalence
classes A and B over Vr such that Cÿ1Aÿ B �
Cÿ1Bÿ A. Then by Lemmas 8 and 9, the system's
diagnosability is r.

Firstly, we show that every equivalence class
contains only one node. Without loss of generality,
we suppose v0 � 0 . . . 000 2 Vr and show that v0 �
0 . . . 000 is an equivalence class by itself. Since any
node can be numbered as 0 . . . 000, this proves that
every node of Vr is an equivalence class by itself.
We have

Cÿ1�v0�
� f0 . . . 001; 0 . . . 010; 0 . . . 100; . . . ; 1 . . . 000g;

such that jCÿ1�v0�j � r. For any node v1 2 Vr such
that H�v0; v1� � 1, we can always number
v1 � 0 . . . 001. We have

Cÿ1�v1�
� f0 . . . 000; 0 . . . 011; 0 . . . 101; . . . ; 1 . . . 001g;

such that jCÿ1�v1�j � r. It can be seen that Cÿ1�v0�
and Cÿ1�v1� will have nothing in common, thus
Cÿ1�v0� 6� Cÿ1�v1�. For any node v2 2 Vr such that
H�v0; v2� � 2, we can always number
v2 � 0 . . . 011. We have

Cÿ1�v2�
� f0 . . . 010; 0 . . . 001; 0 . . . 111; . . . ; 1 . . . 011g;

such that jCÿ1�v2�j � r. It can be seen that Cÿ1�v0�
and Cÿ1�v2� will have at most two nodes in com-
mon. Since jCÿ1�v0�j � jCÿ1�v2�j � r P 3, we have

Cÿ1�v0� 6� Cÿ1�v2�. For any node vi 2 Vr such that
H�v0; vi�P 3, every node of Cÿ1�vi� will have at
least two 1's. Therefore Cÿ1�v0� 6� Cÿ1�vi�.

We now show that there will be no distinct
equivalence classes A and B over Vr, such that
Cÿ1Aÿ B � Cÿ1Bÿ A. Let A � fv0g. For
B � fv1g,
Cÿ1Aÿ B

� f0 . . . 001; 0 . . . 010; 0 . . . 100; . . . ; 1 . . . 000g
ÿ f0 . . . 001g

� f0 . . . 010; 0 . . . 100; . . . ; 1 . . . 000g;

Cÿ1Bÿ A

� f0 . . . 000; 0 . . . 011; 0 . . . 101; . . . ; 1 . . . 001g
ÿ f0 . . . 000g

� f0 . . . 011; 0 . . . 101; . . . ; 1 . . . 001g:

Therefore Cÿ1Aÿ B 6� Cÿ1Bÿ A. For B � fv2g,
Cÿ1Aÿ B

� f0 . . . 001; 0 . . . 010; 0 . . . 100; . . . ; 1 . . . 000g
ÿ f0 . . . 011g;

Cÿ1Bÿ A

� f0 . . . 010; 0 . . . 001; 0 . . . 111; . . . ; 1 . . . 011g
ÿ f0 . . . 000g:

It can be clearly seen that Cÿ1Aÿ B � Cÿ1A, and
Cÿ1Bÿ A � Cÿ1B. Cÿ1A and Cÿ1B will have at
most two nodes in common. Since jCÿ1Aj �
jCÿ1Bj � r P 3, we have Cÿ1Aÿ B 6� Cÿ1Bÿ A.

For B � fvig such that vi � 0 . . . 0 , k P 3,

again we have Cÿ1Aÿ B � Cÿ1A, and Cÿ1Bÿ A �
Cÿ1B. Since Cÿ1A 6� Cÿ1B, we have Cÿ1Aÿ B 6�
Cÿ1Bÿ A.

This completes the proof of the theorem. �

Corollary 2. An n-cube system is n-diagnosable,
n P 3, under the BGM model.

Using Theorem 3 and the BGM diagnosability
algorithm in Ref. [12], the diagnosability algorithm
for incomplete hypercubes under BGM model is
very similar to that for PMC model, presented in
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the previous section, with three main steps. The
only di�erence is at Step 3, when the minimum
degree of all nodes is less than or equal to 2. In
that event, the BGM diagnosability algorithm of
Ref. [12] will be called to compute the system's
diagnosability. Again, we point out that for a
hypercube of reasonably large size, we really
should anticipate that the minimum degree is
bigger than 2 most of the time, so that the algo-
rithm of Ref. [12] is executed very infrequently.

For the time complexity: The BGM diagnos-
ability algorithm in Ref. [12] has complexity
O�jV js2= log s�, where s is the system's diagnos-
ability. Since s6 2 when this algorithm is called,
we have its complexity O�jV j�. Therefore the total
complexity to compute an incomplete hypercube's
diagnosability is O�jV j�.

5. Conclusion

The problem of determining diagnosability for
incomplete hypercubes, i.e., hypercubes that have
arbitrarily distributed missing links, is studied in
this paper. It is shown that for both the classic
PMC diagnostic model and its variant, the BGM
model, an incomplete hypercube's diagnosability is
equal to the minimum number of functioning links
of a node if the minimum number P 3. If the
minimum number 6 2, the algorithms developed
in Ref. [12] are called to decide the diagnosability,
which will run in linear time for small minimum
degree. The result of Theorem 2 gives a more
generalized presentation of the well-known n-
diagnosability of n-cubes.
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