
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A linear-time algorithm for computing collision-free path on
reconfigurable mesh

Dajin Wang *

Department of Computer Science, Montclair State University, Upper Montclair, NJ 07043, USA

a r t i c l e i n f o

Article history:
Received 20 September 2005
Received in revised form 29 May 2007
Accepted 11 March 2008
Available online 18 March 2008

Keywords:
Image processing
Motion planning
Parallel algorithms
Path planning
Reconfigurable mesh
Robotics

a b s t r a c t

The reconfigurable mesh (RMESH) is an array of mesh-connected processors equipped with
a reconfigurable bus system, which can dynamically connect the processors in various pat-
terns. A 2D reconfigurable mesh can be used to solve motion planning problems in robotics
research, in which the 2D image of robot and obstacles are digitized and represented one
pixel per processor. In this paper, we present an algorithm to compute a collision-free path
between two points in an environment containing obstacles. The time complexity of the
algorithm is OðkÞ for each pair of source/destination points, with Oðlog2NÞ preprocessing
time, where k is the number of obstacles in the working environment, and N is the size
of the reconfigurable mesh.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The general purpose of robot motion planning is to plan the movement of a robot in a known or unknown environment filled
with obstacles. The planned movement is often subject to certain requirements. In a typical case, the robot will be commanded
to navigate among a collection of static or time-dependent obstacles (i.e., moving obstacles). The shapes of those obstacles may
range from very simple ones (such as a single segment) to arbitrarily complicated objects. The robot has to move from an initial
position to a target position without colliding (but may be allowed to touch) with any of the obstacles. Moreover, there can be
many different restrictions on the types of movement of the robot, and the robot’s mechanical limitations have to be taken into
account when planning its motion. For example, for a non-circular robot whose workspace is two-dimensional, its movement
can be either translational or rotational. Thus one possible restriction is that only translational movements are allowed. Efficient
algorithms were proposed for solving motion planning problems in past years [18–20].

A very important, constant problem a mobile robot needs to solve, and solve quickly, is path planning. Since path planning
problems, especially in an environment with static or changing obstacles, are computationally intensive, parallel algorithms
with various underlying architectures have been proposed. Tzionas et al. presented parallel algorithm for collision-free path
planning for a diamond-shaped robot and its implementation in VLSI [19]. Jenq and Li have developed optimal algorithms for
computing the configuration space (will be introduced in Section 3.2) by using hypercube computers [7]. Their algorithms run
in Oðlog nÞ time for an n� n image by using n� n processors, and have been shown optimal for hypercube computers. Dehne
et al. presented a systolic algorithm for computing the configuration space obstacles in a plane for a rectilinear convex robot
[5]. The algorithm takes OðnÞ time for an n� n image on an n� n mesh-connected computer. In the application of meshes for

0167-8191/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.parco.2008.03.002

* Tel.: +1 973 655 7615; fax: +1 973 655 4164.
E-mail address: wang@pegasus.montclair.edu

Parallel Computing 34 (2008) 487–496

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco

Author's personal copy

path planning, robot and obstacle images taken by the camera are represented in mesh processors, with each processor hold-
ing one pixel of the image. The image data can then be processed in parallel.

In this paper, we use the reconfigurable mesh to compute a collision-free path. We assume a two-dimensional working
environment. The image of robot and obstacles are digitized, input and stored in the reconfigurable mesh, with one processor
holding one pixel of the image. The obstacles we deal with are supposed to be disjoint convex or concave polygons (if two
polygon images intersect, they are considered one polygon). The task is to navigate the robot from a source location to a tar-
get location, avoiding collision with any obstacles. The reconfigurable mesh architecture we choose to solve the aforemen-
tioned path planning problem is the one first proposed by Miller et al. [12,13]. It is an array of mesh-connected processors
with a reconfigurable bus system that can reconfigure the whole mesh into different substructures. The major attractive fea-
ture of the reconfigurable mesh is its ability to communicate from one PE to any other PE in just one or two steps. That major
feature makes it an attractive structure for a host of, especially geometry-natured, problems. The size of the problem in-
stances often is not a hurdle for a fast solution.

With an Oðlog2NÞ preprocessing time for the given obstacle image, the proposed algorithm uses OðkÞ time to compute a
path for a pair of source/destination while avoiding all obstacles in the environment, where N is the total number of proces-
sors (pixels) and k is the number of disjoint obstacles.

The rest of this paper is organized as follows: In Section 2 we review the past works in the research of reconfigurable
meshes. In Section 3, we describe in detail the structure of RMESH, the reconfigurable mesh computer we use to carry
out our algorithm. In Section 3, we also briefly introduce the concept of configuration space, which is a technique used to
expand (inflate) the obstacles in the working environment, so that the robot can be reduced to a point. Throughout this pa-
per, we assume the obstacles are already expanded, so our robot is a point in plane. In Section 4, we introduce some oper-
ations on RMESH developed by other researchers. These operations will be made use of in our algorithm. Section 5 describes
the algorithm to compute a collision-free path using reconfigurable mesh and analyzes its complexity. Concluding remarks
are given in Section 6.

2. Previous related works

The algorithm proposed in this paper makes use of the reconfigurable mesh multiprocessor computer [12,13], which is an
array of mesh-connected processors with a reconfigurable bus system that can reconfigure the whole mesh into different
substructures. Since its first proposal more than a decade ago, the reconfigurable mesh model kept drawing researchers’
interest. In [11], the list ranking problem is shown to be solvable on reconfigurable mesh using Oðn1þ�Þ processors, where
� is an arbitrary positive constant <1. In [2], Bourgeois and Trahan presented simulation results for a host of reconfigurable
optically pipelined bus models, and established that they possess the same complexity. So any of these models can simulate
a step of one of the other models in constant time, regardless of the increase in instance size. Estrella-Balderrama et al. dealt
with fault-tolerance on the reconfigurable meshes [6]. A novel technique was proposed to identify a healthy sub-mesh from
a faulty model. In [16], an efficient Hough transform algorithm on a 3D reconfigurable mesh was proposed that runs in con-
stant time on a 3D nlog2N � N � N reconfigurable mesh. In [4], efficient algorithms were proposed for packet routing on the
reconfigurable linear array and the reconfigurable two-dimensional mesh. The time bounds were shown to be better than
those achievable on the conventional mesh and previously known algorithms. In [3], Chung and Chen presented an efficient
parallel algorithm for solving the problem of neighbor-finding for a bincode-based binary image. The proposed neighbor-
finding algorithm can run in Oð1Þ time on an n1=2 � n1=2 � n1=2 reconfigurable mesh, using Oðn3=2Þ processors. The work of
[15] included a comprehensive study of the important maze-routing problem, which can find applications in both VLSI rout-
ing and robotic path planning. RMESH architectures were shown to be particularly suitable for fast algorithms to solve maze-
routing problems. To an extent, the current paper could be viewed as an extension of the work in [15] if the ‘‘mazes” are
perceived as obstacles with special properties.

3. Preliminaries

3.1. Reconfigurable mesh

There are several different models of reconfigurable meshes [1,12,17,21]. The particular reconfigurable mesh architecture
we consider in this paper is called RMESH [12,13]. It employs a reconfigurable bus to interconnect all processors. Fig. 1 shows
the conceptual structure of a 4� 4 RMESH, in which a square represents a processor, a circle represents a switch. The switches
can be programmed to open/close in any specified manner. By doing so the interconnection bus may be reconfigured into
smaller sub-buses that connect a subset of processors. The extra-equipped bus system is the most important feature of
RMESH.

The major features of an RMESH are as follows:

� A 2D RMESH is a two-dimensional mesh-connected, m� n array of processors. We define N ¼ m� n to be the size of the
RMESH. The id of each processor is a 2-tuple ði; jÞ, where i is its row index, j its column index. We designate that the id of
the lower left corner processor be ð0;0Þ.

488 D. Wang / Parallel Computing 34 (2008) 487–496

Author's personal copy

� Processors are connected to each other with bus switches. Each processor has up to four switches (see Fig. 1), named E-
(east), W- (west), S- (south), and N- (north) switches, respectively. These switches are software controlled and can be used
to reconfigure the bus into sub-buses.For example, row buses are formed if each and every processor disconnects its S- and
N-switches, and connects its E- and W-switches. Column buses are formed by disconnecting all E- and W-switches, and
connecting all S- and N-switches. An all-plane bus can be formed by connecting all switches. Once a sub-bus is formed, all
data move is among processors connected to this sub-bus.

� Only one processor can put data onto a given sub-bus at a time.
� In unit time, data put on a sub-bus can be read in parallel by every processor connected to the sub-bus, i.e., data are trans-

ferred using only switches without stopping at intermediate processors.

Mesh-connected parallel computers have been used to solve image processing problems [14,13], in which the images are
digitized, input and stored in the mesh with one processor holding one image pixel. RMESH can be used to solve these prob-
lems much faster with its extra communication and reconfiguration power.

3.2. Obstacles in configuration space

In robotics research, an important problem is to compute a path from a source position to a target, avoiding all obstacles
in the environment. To simplify the problem, we often tackle the problem with the assumption that the robot is a point in the
plane. This assumption makes the observation to problems much clearer and easier, greatly reducing the complexity of de-
sign and analysis. To accommodate to real problems, in which robots are usually not point-like, we resort to the idea of con-
figuration space [5,7,10]. To put it simply, a configuration space is obtained by expanding the original obstacles according to
the robot’s shape and its pattern of movement. After computing configuration space, a path planning problem with non-
point-like robot and a set of obstacles can be reduced to a problem with a point-like robot and a set of expanded obstacles
in configuration space.

In a simple example shown in Fig. 2, a rectangular robot R is to be moved to d. The two shaded polygons are the original
obstacles. Suppose the right lower corner s is the ‘‘reference point” that we use to compute the path. Then the expanded
obstacles in configuration space are the areas enclosed by the dark dashed lines and the original obstacles. After computing
expanded obstacles, the path planning problem for robot R can be reduced to a problem for reference point s. In [8,9], the
computation of configuration space obstacles have been considered. For robots of basic shapes (such as circles, polygons),
the expanded obstacles can be obtained in Oð1Þ time. In this paper, we assume the obstacles are already expanded, so
our robot is a point in plane.

4. Previous techniques

The collision-free path computation algorithm we propose in this paper will make use of some techniques introduced in
[13]. These techniques and their time complexities are stated in this section. The detailed description and analysis can be
found in [13].

Performing ‘‘OR” on a row/column of boolean values.

Processor

Switch
Link

Fig. 1. A 4� 4 RMESH. By setting bus switches, the processors can be reconfigured into different substructures.

D. Wang / Parallel Computing 34 (2008) 487–496 489

Author's personal copy

A row/column of boolean values (1/0) can be ORed in Oð1Þ time on RMESH. Let processor Pi;j at row i contain boolean
value bj, 1 6 j 6 n. After a fixed number of operations, the OR-result of all bj can be collected at Pi;0 (and can be broadcast
to any other processor if wanted).

Determining the maximum (or minimum) value of a row/column of data.
This useful operation can be done in Oð1Þ time. Let a row of elements ðx1; x2; . . . ; xnÞ reside at the bottom row of a RMESH.

Then after a fixed number of operations, the maximum (or minimum) value of ðx1; x2; . . . ; xnÞ can be found – the processor P0;j

containing the maximum value xj will be aware of this fact. The method uses n� n processors and the column-OR operation
stated above.

Determining the tangent lines from a point to a convex polygon.
See Fig. 3. Given a convex polygon G mapped on RMESH, and a point A outside of G. The two tangent lines from A to G can

be determined in constant time on RMESH.
Enumerating the extreme points of the convex hull of a polygon.
See Fig. 4. Given a polygon G mapped on RMESH, we want to identify the extreme points of the convex hull of G. The enu-

merated extreme points can completely represent a polygon on plane. An enumerated extreme point stores its own location
and number, and the locations and numbers of its preceding and following extreme points.

The enumeration can be done in Oðlog2NÞ time on an RMESH, where N is the size of the RMESH.
Finding the two tangent lines of two convex polygons.
See Fig. 5. Given two disjoint convex polygons G and H, mapped on RMESH. The two tangent lines of G and H can be deter-

mined in Oð1Þ time. The operation works out the convex hull of G and H.

S

d

R

Fig. 2. R is a rectangular robot. The original obstacles are expanded so that R can be reduced to a point s. The working space after expansion is called
configuration space.

G

A

Fig. 3. The two tangent lines from A to G can be determined in Oð1Þ time.

490 D. Wang / Parallel Computing 34 (2008) 487–496

Author's personal copy

5. Collision-free path computation

5.1. Basic operations

5.1.1. Set handling
We designate a certain number of processors to represent a set, with each processor representing an element of the set.

The unique location id can be used as the element id. A membership flag indicates whether the element is in the set or not (1
or 0). The following operations will be employed by our algorithm.

Determining whether the set contains at least two elements.
We first consider the case in which the element space contains only one row, say row i.

Step 1 Every ‘‘1” element broadcasts its id toward west. The id of the westernmost ‘‘1” element Pi;w will be received by Pi;0;
if no id is received, the answer is No (empty set); if an id is received, goto Step 2.

Step 2 Pi;0 temporarily sets Pi;w to be a ‘‘0” element.
Step 3 Repeat the broadcasts in Step 1; if Pi;0 received another id, the answer is Yes, otherwise the answer is No (singleton

set).
Step 4 Pi;0 sets Pi;w back to ‘‘1”.

Each step costs constant time, therefore the total cost is Oð1Þ.
If the element space contains several adjacent rows i; iþ 1; . . . ; j, the procedure is described as follows:

Step 1 All rows run in parallel the 4-step single-row procedure; the results ck (‘‘0” for empty, ‘‘1” for singleton, ‘‘2” for at
least 2) are stored at Pk;0, i 6 k 6 j.

Tangent

Tangent

H

G

Fig. 5. G and H are two disjoint convex polygons. The two tangent lines of G and H can be determined in Oð1Þ time.

3

4

5

CH(G)
6

1

2

G

Fig. 4. The dark segments form G’s convex hull. The convex hull extreme points of all polygons mapped on an RMESH of size N can be enumerated in
Oðlog2NÞ time.

D. Wang / Parallel Computing 34 (2008) 487–496 491

Author's personal copy

Step 2 At column 0, all ‘‘1” and ‘‘2” processors broadcast their id and ck toward south. The id and cs of the southernmost ‘‘1”
or ‘‘2” element Ps;0 will be received by Pi;0; if no id is received, the answer is No (empty set); if a cs ¼ 2 is received,
the answer is Yes; if a cs ¼ 1 is received, goto Step 3.

Step 3 Pi;0 temporarily sets cs at Ps;0 to be ‘‘0”.
Step 4 All ‘‘1” and ‘‘2” elements broadcast toward south again; if Pi;0 received another id, the answer is Yes, otherwise the

answer is No (singleton set).
Step 5 Pi;0 sets cs at Ps;0 back to ‘‘1” or ‘‘2”.

Again, all five steps can be accomplished in a unit step, hence Oð1Þ total cost.
Adding a new element.
We need to find a processor that has 0 flag, and allocate it to the new element. We assume the element space contains ith

row and Pi;0 is the set handler.

Step 1 Every ‘‘0” element broadcasts its id toward west. The id of the westernmost ‘‘0” element Pi;w will be received by Pi;0.
Step 2 Pi;0 sets Pi;w’s membership flag to ‘‘1”.
Step 3 Pi;0 informs the processor that made the insertion request of the new element’s id.

This operation obviously has complexity Oð1Þ. The extension to multiple-row element space is straightforward and is
omitted.

Deleting an element.
We need to set a specific processor’s membership flag to ‘‘0”. This is an easy operation. Again, we assume Pi;0 to be the set

handler.

Step 1 Pi;0 sends a signal to target processor Pj;k.
Step 2 Pj;k sets its membership flag to ‘‘0”.

This operation obviously has complexity Oð1Þ.

5.1.2. Merge (convex hull) of two non-disjoint convex polygons
In the proposed algorithm, we need to merge two convex polygons G;H into one. G and H are intersecting with a specific

pattern, i.e., G intersects with exactly one known edge of H, as shown in Fig. 6. This merge can be done in constant time as
follows:

Step 1 Using the method introduced in [13], a; b determine their tangent lines to G (dashed arrows labeled ‘‘1” in Fig. 6.
Tangent points are c; d; e; f).

Step 2 Determine which two of c; d; e; f are internal to H. Method: compute which of the extended vectors ~ad; ~ae; ~bc; ~bf
intersect with a segment of H (the extended vectors ~ae and ~bf intersect with a segment of H, therefore e and f
are internal).

Step 3 The external points c and d determine their tangent lines to H (dashed arrows labeled ‘‘2” in Fig. 6. Tangent points
are g;h; i; j. Notice that ‘‘1” and ‘‘2” lines may coincide).

Step 4 The two segments that do not intersect are the final tangent lines (dg and cj).

Every step can be done in fixed number of steps, hence Oð1Þ complexity. If G intersects with two known edges of H, then
the above process can be repeated for the second edge. The complexity remains Oð1Þ.

5.2. The algorithm

Before algorithm starts, we assume the digitized obstacle image has been stored in the RMESH, one pixel per processor.
The images are black and white. A processor has a 1/0 flag indicating whether it is a black/white pixel. In the following algo-
rithm description, sd represents the line segment from point s to point d; SG represents a set of polygonal obstacles;
CHðGi;GjÞ represents the convex hull of polygons Gi and Gj.

We illustrate the idea of the algorithm in Fig. 7. The algorithm first draws a straight line sd from source s to destination d.
If sd intersects with any obstacles (polygons O1 and O2 in Fig. 7), the algorithm merges these obstacles by computing their
convex hulls. The tangent lines (h1 and h2) used to form convex hulls may intersect with more obstacles (O3 and O4). The
newly intersected obstacles are then merged again (h3, h4, h5, and h6). The above process is repeated, until the tangent lines
are not intersecting with any obstacles, so that there is only one ‘‘big obstacle” Gf intersecting with sd.

The algorithm then draws tangent lines from s to Gf and from d to Gf , respectively. The four tangent lines may intersect
with more obstacles, which will be merged with Gf again. The merging process will be repeated until the four tangent lines
do not intersect with any obstacles (t1, t2, t3, and t4 in Fig. 7). By now there are two feasible collision-free paths from s to d,
and either one can be chosen as the algorithm output. The formal description of the algorithm follows.

492 D. Wang / Parallel Computing 34 (2008) 487–496

Author's personal copy

5.2.1. Preprocessing
First, all polygonal obstacles are convexized and their extreme points enumerated. After the enumeration, every processor

that is an extreme point contains the following information:

1. A flag that identifies itself as an extreme point.
2. The extreme point’s circular number in the polygon.
3. The preceding/following extreme points’ circular numbers and their locations (therefore the edge information is also

available).
4. The id number of the polygon this point belongs to.

We assume that after convexization, s and d are not covered by any convex polygon. If that is not the case, a constant time
treatment discussed later will reduce the problem to the assumed situation.

The enumeration takes Oðlog2NÞ time [13], where N is the size (number of processors) of the RMESH.
We then designate one or several ‘‘spare” rows (i.e., the processors that are not part of the obstacle images, for example,

the rows at the bottom of the RMESH) to represent the set of all polygons. To facilitate Oð1Þ time buildup of this set, we can
choose a processor directly under the first extreme point (i.e., the westernmost point) of the polygon as the set member. In
case two extreme points have the same x-coordinate, the processor P0;i directly under them will represent the polygon of the
lower point, P0;iþ1 will represent the polygon of the upper point. See Fig. 8 for illustration.

5.2.2. Collision-free path computation
We assume the working environment consists of N ¼ m� n processors connected with RMESH structure. The obstacle

images have been digitized, input and stored one pixel per processor. There are k disjoint polygonal obstacles.

Step 1 Start point s and destination point d broadcast their positions to all processors;
Step 2 Every edge calculates whether the segment sd intersects with itself;

Let G1, G2, . . ., Gm be polygons that intersect with sd;
Step 3 Initialize SG fG1;G2; . . . ;Gmg;

g
a

2

1

H
e

f

1
h

b 2
2

1
G

Cd

2

1

i

Fig. 6. Merge of two non-disjoint convex polygons.

S t2

t1

O5
O1

O3

h4

h1

O4

O2 d

h2

h6

h3

h5

t3

t4

Fig. 7. Merges are repeatedly performed until the four tangent lines from s and d, respectively, do not intersect with any obstacles. As shown, there will be
two feasible collision-free paths from s to d.

D. Wang / Parallel Computing 34 (2008) 487–496 493

Author's personal copy

Step 4 while (SG contains 2 or more polygons)
SG SG� fGi;Gjg; /* extract any two polygons Gi;Gj from SG */
Find the upper/lower tangent lines tu

i;j; t
l
i;j for Gi;Gj;

Gk CHðGi;GjÞ; /* Gi;Gj may or may not be disjoint */
SG SG [fGkg;
tu

i;j; t
l
i;j broadcast their four end-points to all processors;

for every Gp such that Gp 62 SG {
Calculate whether Gp intersects with tu

i;j; t
l
i;j;

if Yes, then SG SG [fGpg;
} end of for
} end of while
/* Entering Step 5, SG contains only one polygon */

Step 5 Let Gf be the polygon in SG;
Calculate the four tangent lines from s; d to Gf ;
Broadcast end-points of the four tangent lines to all processors;

Step 6 for every Gp such that Gp 62 SG {
Calculate whether Gp intersect with the 4 tangent lines;
if Yes, then SG SG [fGpg;
} end of for

Step 7 if (SG contains two or more polygons) then goto Step 4 else goto Step 8.

/* Entering Step 8, the 4 tangent lines from s; d to Gf form a ‘‘big” convex polygon without intersecting with any more
polygons in the environment */

Step 8 Starting from s, output the final polygon’s extreme points in circular order, until d is output; the output points give a
collision-free path; outputting in reverse circular order gives another path (see Fig. 7).

5.3. Time analysis

The preprocessing phase is clearly dominated by the convexization and extreme point enumeration of obstacles. So the
complexity is Oðlog2NÞ, where N is the size of the RMESH. For given environment, this computation is done only once. We
then analyze the stepwise complexity.

Step 1: This step can be accomplished by two one-to-all broadcasts, therefore the complexity is Oð1Þ.
Step 2: Every extreme point contains the segments information associated with it. Therefore the intersection status of all

segments with sd can be computed in parallel, hence complexity Oð1Þ.
Step 3: For every polygon, there are at most two segments intersecting with sd; these two segments can send the ‘‘Yes”

status to the polygon’s representing point (the westernmost point) via the sub-bus within the polygon. The com-
plexity is Oð1Þ.The ‘‘Yes” polygons can vertically broadcast to a row representing set SG, setting membership flags
of processors representing G1;G2; . . . ;Gm to ‘‘1”. The complexity is Oð1Þ.

Step 4: The while-loop of this step will run at most k rounds, where k is the number of disjoint polygons in the environ-
ment. The condition can be checked in constant time using the method described in Section 5.1. We then look at
the time complexity within each round.

SG SG� fGi;Gjg: We can extract the two westernmost elements in SG. Constant time operation.

row 0 G1 G1G3 G4 G5

G4

G2

G1

G3

G5

Fig. 8. A row of processors is used as the set to represent obstacles in the working space.

494 D. Wang / Parallel Computing 34 (2008) 487–496

Author's personal copy

Find the upper/lower tangent lines tu
i;j; t

l
i;j for Gi;Gj: Using the procedure introduced in [13], this can be done in con-

stant time.
Gk CHðGi;GjÞ: Gi and Gj may or may not be intersecting with each other. Two disjoint polygons can be merged
using the procedure introduced in [13]. Two intersecting polygons can be merged using the procedure described
in Section 5.1. In both cases, merge can be done in constant time.
SG SG [fGkg: Constant time operation.
tu

i;j; t
l
i;j broadcast their 4 end-points to all processors: Constant time operation.

for every Gl such that Gl 62 SG {. . .}: All Gl 62 SG can do the operations in parallel within the for-loop, therefore this
for-loop is a constant time operation.
Summarizing Step 4, each round of while-loop takes Oð1Þ time to execute.

Step 5: Tangent lines calculation and broadcast both take constant time.
Step 6: Parallel for-loop with constant time operation, constant time in total.
Step 7: Condition checked in constant time using the method described in Section 5.1.
Step 8: All extreme points (segments) of the final polygon are part of two feasible collision-free paths. They can be broad-

cast in parallel to a row of processors.

In the worst case, the while-loop of Step 4 is run for every original obstacle, but each round of while-loop takes Oð1Þ time
to execute. Therefore the algorithm has OðkÞ complexity, where k is the number of obstacles in the working environment.

5.4. Concave obstacles near s and d

In the algorithm we just proposed, we assumed that after initial convexization, s and d are not covered by any convex
polygon. In this subsection, we discuss the situation when this is not the case, such as shown in Fig. 9.

In Fig. 9, the original s and d are outside of concave polygons Gs and Gd. However, after preprocessing, they are covered by
CHðGsÞ and CHðGdÞ, respectively. The idea of solving this problem is also sketched in Fig. 9 – In preprocessing, we locate ex-
treme points s0 and d0, and then call the algorithm for s0 and d0. To locate s0 and d0, we need to keep the original pixels’ ‘‘1”
(black) flags of Gs and Gd. We also need to keep track of which original segments are eliminated, and by which new segment,
during convexization (for example, in Fig. 9, when doing convexization, new segment f is obtained by eliminating e and e0).
This information can be stored in processors holding eliminated extreme points. The operations are described below. They
can be performed in fixed number of steps.

Step 1 In parallel, s and d broadcast their locations along four directions (E, W, N, and S);
Step 2 All ‘‘1” pixels who have received s and d send back their locations along the row or column buses; the location of

pixel first received by s (d) is on a segment e of Gs (Gd);
Step 3 Find the segment f that eliminated e during enumeration; either of the two ends of f can be used as s0 (d0).

6. Conclusion

We have presented an algorithm on reconfigurable mesh (RMESH) to compute a collision-free path between two points in
an environment filled with obstacles, in which the two-dimensional image of robot and obstacles are digitized and repre-
sented on RMESH one pixel per processor. The time complexity of the algorithm has been shown to be OðkÞ for each pair

Gs

s'
e'

s'
e

sf

Gd

e d e'
f

d'

d'

Fig. 9. After convexization, s and d are covered by the convex hulls of Gs and Gd , respectively.

D. Wang / Parallel Computing 34 (2008) 487–496 495

Author's personal copy

of source/destination points, with Oðlog2NÞ preprocessing time, where k is the number of obstacles in the working environ-
ment, and N is the size of the reconfigurable mesh (i.e., the number of pixels in the image). The most important feature of
RMESH is its capability to transfer data among processors in constant time. In parallel computation of collision-free path, as
in many other parallel algorithms, the majority of processing time is spent on moving data among processors. Making use of
RMESH’s constant time data transfer ability, our algorithms can be managed to run in OðkÞ time.

We have used only two-dimensional RMESH for polygonal obstacles considered in this paper. For obstacles of more com-
plicated shapes, one plane of processors my not be enough to compute collision-free path in the ‘‘linear” OðkÞ time. If fast
algorithms are still to be sought, we may need three-dimensional RMESH so that the massive data can be transferred on dif-
ferent planes in parallel.

There are many directions in which the work of this paper can be extended. An immediate one would be to develop effi-
cient algorithms to find the shortest path between source and destination. Another future research can be on time-varying
environments, in which obstacles move. The current algorithm deals with static obstacles. For moving obstacles, a space-
time is needed to model the obstacles. The problem then can be turned into merging polyhedra in 3D space.

References

[1] Y. Ben-Ashen, D. Peleg, R. Ramaswami, A. Schuster, The power of reconfiguration, J. Parallel Distr. Comput. 13 (2) (1991) 139–153.
[2] A.G. Bourgeois, J.L. Trahan, Relating two-dimensional reconfigurable meshes with optically pipelined buses, in: IPDPS 2000, pp. 747–752.
[3] K.-L. Chung, H.-N. Chen, A neighbor-finding algorithm for bincode-based images on reconfigurable meshes, Comput. J. 43 (4) (2000) 315–324.
[4] J.C. Cogolludo, S. Rajasekaran, Permutation routing on reconfigurable meshes, Algorithmica 31 (1) (2001) 44–57.
[5] F. Dehne, A. Hassenklover, J. Sack, Computing the configuration space for a Robot on a mesh-of-processors, in: Proc. 1989 ICPP, vol. 3, 1989, pp. 40–47.
[6] A. Estrella-Balderrama, J. Fern ndez-Zepeda, A. Bourgeois, Fault tolerance and scalability of the reconfigurable mesh, in: Proc. IPDPS 2004, p. 172b.
[7] J. Jenq, W. Li, Computing the configuration space for a convex Robot on hypercube multiprocessors, in: Proc. 7th IEEE Symp. of Parallel and Distributed

Processing, 1995, pp. 160–167.
[8] J. Jenq, D. Wang, Parallel computation of configuration space on reconfigurable mesh with faults, in: ICPP-2000 Workshop on High Performance

Scientific and Engineering Computing, August 2000.
[9] J. Jenq, D. Wang, W. Li, Computing the configuration space on reconfiguration mesh multiprocessors, in: ISCA 13th Int. Conf. on Parallel and Distributed

Computing Systems (PDCS-2000), August 2000.
[10] L. Kavraki, Computation of configuration-space obstacles using the fast Fourier transform, IEEE Trans. Robot. Automat. (1995) 408–413.
[11] S.-R. Kim, K. Park, Efficient list ranking algorithms on reconfigurable mesh, in: Proc. COCOON 2000, pp. 262–271.
[12] R. Miller, V.K. Prasanna Kumar, D.I. Reisis, Q.F. Stout, Meshes with reconfigurable buses, in: Proc. MIT Conf. Advanced Research in VLSI, April 1988, pp.

163–178.
[13] R. Miller, V.K. Prasanna Kumar, D. Reisis, Q.F. Stout, Parallel computations on reconfigurable meshes, IEEE Trans. Comput. 42 (6) (1993) 678–692.
[14] R. Miller, Q.F. Stout, Geometric algorithms for digitized pictures on a mesh-connected computer, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7 (1985)

216–228.
[15] H.-C. Lee, Efficient parallel algorithms on reconfigurable mesh architectures, Ph.D. Dissertation, University of Missouri-Rolla, 1996. <http://

www.mis.yzu.edu.tw/faculty/hlee/csdiss/>.
[16] Y. Pan, Constant-time Hough transform on a 3D reconfigurable mesh using fewer processors, in: Proc. IPDPS 2000, pp. 966–973.
[17] M. Nigam and S. Sahni, Sorting n numbers on n� n reconfigurable meshes with buses, in: Proc. Int. Parallel Processing Symp., April 1993, pp. 174–181.
[18] K. Sutner, W. Maass, Motion planning among time dependent obstacles, Acta Inform. 26 (1988) 93–122.
[19] P. Tzionas, A. Thanailakis, P. Tsalides, Collision-free path planning for a diamond-shaped robot using two dimensional cellular automata, IEEE Trans.

Robot. Automat. 13 (2) (1997) 237–250.
[20] D. Wang, Two algorithms for a reachability problem in one-dimensional space, IEEE Trans. Syst., Man, Cybern. 28 (4) (1998).
[21] B.F. Wang, G.H. Chen, F.C. Lin, Constant time sorting on a processor array with a reconfigurable bus systems, Inform. Process. Lett. (1990) 187–192.

496 D. Wang / Parallel Computing 34 (2008) 487–496

