
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

A heuristic fault-tolerant routing algorithm in mesh
using rectilinear-monotone polygonal fault blocks

Dajin Wang *

Department of Computer Science, Montclair State University, Upper Montclair, NJ 07043, USA

Received 5 October 2005; received in revised form 18 August 2006; accepted 22 December 2006
Available online 8 January 2007

Abstract

A new, rectilinear-monotone polygonally shaped fault block model, called Minimal-Connected-Component (MCC),
was proposed in [D. Wang, A rectilinear-monotone polygonal fault block model for fault-tolerant minimal routing in
mesh, IEEE Trans. Comput. 52 (3) (2003) 310–320] for minimal adaptive routing in mesh-connected multiprocessor sys-
tems. This model refines the widely used rectangular model by including fewer non-faulty nodes in fault blocks. The posi-
tions of source/destination nodes relative to faulty nodes are taken into consideration when constructing fault blocks.
Adaptive routing algorithm was given in Wang (2003), that constructs a minimal ‘‘Manhattan’’ route avoiding all fault
blocks, should such routes exist. However, if there are no minimal routes, we still need to find a route, preferably as
short as possible. In this paper, we propose a heuristic algorithm that takes a greedy approach, and can compute a nearly
shortest route without much overhead. The significance of this algorithm lies in the fact that routing is a frequently
performed task, and messages need to get to their destinations as soon as possible. Therefore one would prefer to have
a fast answer about which route to take (and then take it), rather than spend too much time working out an absolutely
shortest route.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Adaptive routing; Fault block model; Fault tolerance; Interconnection network; Mesh

1. Introduction

The mesh structure is one of the most important
interconnection network models. As a topology to
interconnect multiprocessor computer systems, it
has been shown to possess many attractive proper-
ties. It has been one of the most favored intercon-
nection structures to manufacturers, and parallel

computers using mesh or its variants have been
commercially available for quite a long time
[6,14,16]. The interest in this simple yet advanta-
geous structure has been sustaining. New topologies
based on mesh still appeared in recent literature [9].
Because of its importance to achieving high perfor-
mance, fault-tolerant computing for mesh structures
has been the focus of an extensive literature. A very
important aspect of mesh fault tolerance is its ability
to route from a source node to a destination, avoid-
ing all faulty nodes. Routing is a process to send
messages, which can be either data or instructions,

1383-7621/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2006.12.005

* Tel.: +1 973 655 7615.
E-mail address: wang@pegasus.montclair.edu

Journal of Systems Architecture 53 (2007) 619–628

www.elsevier.com/locate/sysarc

Aut
ho

r's

pe
rs

on
al

co

py

from a source node to a destination node, passing
some intermediate nodes. There are basically two
types of routing: deterministic routing and adaptive

routing. In deterministic routing, a fixed path is
used to send/receive messages for a particular pair
of source/destination. The obvious advantages of
this routing are its simplicity and ease of implemen-
tation. However, it suffers the shortcoming of weak
fault tolerance. When one or more nodes on the
dedicated path fail, routing cannot be carried out.
In adaptive routing, on the other hand, there is no
dedicated path for a pair of source and destination.
The path is adaptively constructed in the process of
routing. In fully adaptive routing, messages can take
any fault-free intermediate nodes to reach destina-
tion. As a result, adaptive routing can tolerate faulty
nodes by taking detours.

A natural goal in adaptive routing is to find a
route as short as possible in the presence of faulty
nodes, preferably the minimal route. Fault-tolerant
routing has been studied extensively [1–5,7,8,10–
12,15,17,18,20,21]. In fault-tolerant routing on
mesh, most work uses rectangular fault block model
[1,2,4,13,17,21]. In rectangular model, all faulty
nodes are grouped in disconnected, rectangular
areas, called fault blocks. A fault block is con-
structed in a way that includes as few non-faulty
nodes as possible while maintaining rectangular
shape. All nodes in these fault blocks, whether they
are faulty or non-faulty, are to be bypassed in any
routes. Rectangular fault block model is a simple
and useful model, based on which many routing
algorithms were developed. However, as we will
show in Section 2, this model may not be optimal
for the purpose of finding routes as short as possi-
ble. In constructing rectangular blocks, some non-
faulty nodes are unnecessarily included, decreasing
the number of selectable nodes for routing, thus
decreasing the chance for finding minimal routes.
In [19], a fault block model, Minimal-Connected-
Component (MCC), was proposed to facilitate min-
imal fault-tolerant adaptive routing. The proposed
model is a refinement of the widely used rectangular
model. Using MCC, the chances of finding a mini-
mal route can be greatly increased in presence of
faulty nodes. An adaptive routing algorithm, which
we will refer as MIN_ROUTING in this paper, was
given in [19] that constructs an optimal ‘‘Manhat-
tan’’ route avoiding all MCC fault blocks, should
such routes exist.

In this paper, we will present a heuristic algo-
rithm which, in the event a minimal Manhattan

route does not exist, computes a fault-avoiding
route using MCC model. With some preprocessing,
the algorithm quickly works out convincingly good
routes in terms of average path length, deviating
from the real shortest route by only a few Hamming
distance. Since finding a shortest route among all
possible routes, avoiding all faults, is a very time
consuming task in general, it makes sense to seek
for a trade-off between route length and the time
spent finding it. In a multiprocessor computer sys-
tem, a route for a specific source/destination may
only be used a few times. This makes the exhaustive
search for a shortest route particularly uneconomi-
cal. Moreover, routing from one node to another
is taking place all the time in multiprocessor com-
puters. In many cases, it is preferable that a route
be worked out quickly, and used to pass messages,
rather than spend too much time computing an
absolutely shortest route. In summary, the proposed
algorithm provides an important option for the task
of routing.

The rest of this paper is organized as follows.
Section 2 gives the preliminaries, including the moti-
vation of proposing Minimal-Connected-Compo-
nent (MCC) fault block model. In Section 3, we
give a formal description of MCC fault block
model. We also introduce a sufficient and necessary
condition for the existence of minimal Manhattan
routes in presence of MCC fault blocks. In Section
4, we propose an adaptive routing algorithm that
heuristically constructs a nearly shortest route with-
out much overhead, in case that a Manhattan route
is known to be nonexistent. In Section 5, experiment
results are presented and discussed. We give some
concluding remarks in Section 6.

2. Preliminaries

It is convenient to represent a two-dimensional
(2D) mesh with a 2D coordinate system, in which
we use a pair of ordered integers (x,y) to locate
and identify a node. Routing is then to send mes-
sages from a source node (xs,ys) to a destination
(xd,yd), passing some intermediate nodes. For the
convenience of discussion and without loss of gener-
ality, we can always define the coordinate system so
that (xs,ys) = (0,0). The destination node (xd,yd)
will then fall in one of the four quadrants. Without
loss of generality, we always assume that (xd,yd) is
in the first quadrant, i.e., xd P 0 and yd P 0. The
cases for destinations falling in other quadrants
need only symmetric treatments.

620 D. Wang / Journal of Systems Architecture 53 (2007) 619–628

Aut
ho

r's

pe
rs

on
al

co

py

In a 2D mesh, a non-boundary node (x,y) has
four immediate neighbors, located at (x + 1,y),
(x � 1,y), (x,y + 1) and (x,y � 1), respectively. Fol-
lowing the convention in literature on meshes, we
say that node (x + 1,y) is (x,y)’s neighbor in its east

direction. Similarly, (x � 1,y), (x,y + 1), and (x,y �
1) are called (x,y)’s west, north, and south neighbors.
In each step of routing, a node can take one and
only one direction to its immediate neighbor. So a
routing can be represented as a sequence of direc-
tions. We define Manhattan route and shortest route

as follows:

Definition 2.1. A route is called Manhattan route if
during the routing, at most two directions are used.

Definition 2.2. A route is called shortest route if
among all possible routes, it has the shortest Ham-
ming distance.

The Hamming distance, in this paper’s context, is
simply the number of nodes a route passes (a.k.a.
‘‘lengths’’ or ‘‘hops’’) to reach the destination. Obvi-
ously, a Manhattan route is a minimal route in
terms of route length, and can always be effected
for any pair of (xs,ys) and (xd,yd) in a mesh with
no faulty nodes. A Manhattan route must be a
shortest route, but not vice versa.

If there are some faulty nodes in the mesh, in the
sense that these nodes are unable to receive/send
messages, a Manhattan route may or may not exist.
In [20], a sufficient condition was proposed for the
existence of Manhattan route using the commonly
used disconnected rectangular block fault model
[17]. While a useful model facilitating many routing
algorithms [1,2,4,13,17], it is not an optimal one for
the purpose of finding routes as short as possible. In
forming the rectangular fault blocks, the positions
of source and destination as relative to the faults
are not taken into consideration. For example, as
per the definition of rectangular fault block, in
Fig. 1, the fault block A contains fault-free but ‘‘dis-
abled’’ nodes a, g, i, and j. Since the whole block is
to be bypassed, these disabled nodes will not be used
in the process of routing no matter where the source
and destination are. However, if source s and desti-
nation d are as given in Fig. 1, using them in routing
can generate a Manhattan route (s! g! a! i!
j! d).

The above example motivates for a finer model of
fault block so that the shortest possible routes can
be found in the presence of faulty nodes. In [19],
the Minimal-Connected-Component fault model,

MCC for abbreviation, was proposed for that pur-
pose. The main idea behind this fault model is that
a node will be included in a fault block only if using
it in a routing will definitely make the resulting
route non-Manhattan. In the next section, we will
introduce MCC and the minimal routing result
using it.

3. Minimal-connected-component (MCC) Fault

block model

3.1. The MCC model

Again, the following discussion assumes that
(xs,ys) = (0,0) and (xd,yd) falls in the first quadrant.
Thus, a Manhattan route from (xs,ys) = (0, 0) to
(xd,yd) would only take east and/or north directions.

The formation of MCC blocks is a recursive
procedure, described as follows:

1. Initially, label all faulty nodes as ‘‘faulty’’;
2. If a node (x,y) is fault-free, but its north neigh-

bor (x,y + 1) and east neighbor (x + 1,y) are
faulty, (x,y) is labeled ‘‘useless’’;

3. If a node (x,y) is fault-free, but its north and east
neighbors are either faulty or useless, (x,y) is
labeled ‘‘useless’’;

4. If a node (x,y) is fault-free, but its south neigh-
bor (x,y � 1) and west neighbor (x � 1,y) are
faulty, (x,y) is labeled ‘‘can’t-reach’’;

5. If a node (x,y) is fault-free, but its south and west
neighbors are either faulty or can’t-reach, (x,y) is
labeled ‘‘can’t-reach’’;

6. The nodes are recursively labeled until there are
no new useless or can’t-reach nodes;

faulty node

faulty block

s

d

a b

cef

g

h i j

A

B

C

Fig. 1. An example of rectangular fault blocks. Fault-free but
disabled nodes in a fault block will not be used in routing.

D. Wang / Journal of Systems Architecture 53 (2007) 619–628 621

Aut
ho

r's

pe
rs

on
al

co

py

7. Finally, if two adjacent nodes are either faulty or
useless or can’t-reach, the two nodes are con-
nected with an imaginary edge.

A node labeled ‘‘useless’’ is such a node that once
it is entered in a routing, the next move must take
either west or south direction, making a Manhattan
routing impossible. A node labeled ‘‘can’t-reach’’ is
such a node that to enter it in a routing, a west or
south move must be taken, making a Manhattan
routing impossible.

We call the final node set connected this way an
MCC fault block. Fig. 2a shows what useless and
can’t-reach nodes are; Fig. 2b is an example MCC
fault block; and the ‘‘general shape’’ of an MCC
is shown in Fig. 2c. Note that the construction of
MCC is dependent on the relative positions of
source and destination. The general shapes of
MCC for destinations falling in the second, third,
and fourth quadrants, respectively, are shown in
Fig. 3. It can be seen that MCCs for destinations
falling in quadrants I and III are of the same general

shape, while MCCs for destinations falling in quad-
rants II and IV have the same shape. Therefore, it is
not necessary to compute a set of fault blocks for
each pair of source/destination. Instead, for given
faulty nodes, only two different sets of fault blocks
are computed: The destination d falling in quadrant
I or III uses one set for routing, and d falling in
quadrant II or IV uses the other set.

The following observations of MCC are
important:

Proposition 3.1. All MCCs in a mesh are disjoint to

each other.

Proposition 3.2. Any two MCCs are separated by at
least two Hamming distance, i.e., one can always find

a route going ‘‘in-between’’ two MCCs.

MCC model includes much fewer non-faulty
nodes in fault blocks. Many non-faulty nodes that
would have been included in rectangular fault
blocks now can become candidate routing nodes.
Experiments were conducted to compare the two
models in terms of (1) the total number of nodes
included in fault blocks; and (2) the total number
of fault blocks. Comprehensive simulation results
[19] showed that the benefit of using MCC model
(as opposed to the rectangular model) is quite enor-
mous - the number of nodes (both faulty and fault-
free) included in rectangular blocks is much higher
than that in MCC blocks. Since all nodes included
in faulty blocks are disabled for routing, MCC
blocks result in much more non-disabled nodes in
the mesh.

In [19], a sufficient and necessary condition was
proposed for the existence of Manhattan routes in
a mesh using MCC model. Also, [19] presented an
algorithm (referred as MIN_ROUTING in this
paper) to find a Manhattan route provided that
such routes exist. The sufficient and necessary con-
dition for the existence of Manhattan routes is sta-
ted below.

useless

can’t-reach

faulty

s

d

Fig. 2. (a) Definition of useless and can’t-reach nodes; (b) an
example MCC fault block; (c) a general MCC has the shape of
the so-called ‘‘rectilinear monotone’’ polygon. It looks like a
staircase.

s

s

d

d d

s

Fig. 3. The shape of MCC for destination falling in (a) second quadrant; (b) third quadrant; (c) fourth quadrant.

622 D. Wang / Journal of Systems Architecture 53 (2007) 619–628

Aut
ho

r's

pe
rs

on
al

co

py

Theorem 3.1. A Manhattan route, from source node

s = (0,0) to destination node d = (xd,yd), can be found

if and only if neither of the following two statements

holds.

1. There exists a sequence of MCCs (M1,M2, . . . ,

Mn), such that

• M1 contains a node (0,z1) such that 0 < z1 < yd;

• Mn contains a node (xd, zn) such that 0 < zn < yd;

• For all Mi, Mi+1, 1 6 i 6 n � 1,

minfa : ða; bÞ 2 Miþ1g � 1 6 maxfu : ðu; vÞ
2 Mig 6 maxfx : ðx; yÞ 2 Miþ1g � 1

and

maxfv : ðu; vÞ 2 Mig < maxfy : ðx; yÞ 2 Miþ1g
We call this type of sequence Type-I sequence.

2. There exists a sequence of MCCs (M1,M2, . . . ,

Mn) such that

• M1 contains a node (z1,0) such that 0 < z1 < xd;

• Mn contains a node (zn,yd) such that 0 < zn < xd;
• For all Mi, Mi+1, 1 6 i 6 n � 1,

minfb : ða; bÞ 2 Miþ1g � 1 6 maxfv : ðu; vÞ
2 Mig 6 maxfy : ðx; yÞ 2 Miþ1g � 1

and

maxfu : ðu; vÞ 2 Mig < maxfx : ðx; yÞ
2 Miþ1g:

We call this type of sequence Type-II sequence.

Fig. 4 gives an intuitive illustration of the two
types of MCC sequences to help convey the idea.
The proof of Theorem 3.1 can be found in [19].

Note that it is possible that the distribution of
MCCs makes the conditions in Theorem 3.1 true,

thus minimal routing impossible. If that is the case,
we still need to find a route, preferably as short as
possible. In the rest of this paper, we will propose
a heuristic routing algorithm in case there exists
no minimal Manhattan routes.

3.2. MCC overlapping graph

Definition 3.1. A node of MCC Mi is called the
northeast node of Mi if neither its north nor its east
neighbor belongs to any MCC. We use Ui to denote
the northeast node of Mi. Similarly, a node of MCC
Mi is called the southwest node of Mi if neither its
south nor its west neighbor belongs to any MCC.
We use Li to denote the southwest node of Mi.

x(U) is used to denote node U’s x-coordinate,
y(U) to denote U’s y-coordinate.

The algorithm we will propose needs frequent
answers to the question ‘‘whether a Manhattan
route exists between a particular pair of nodes.’’
Based on Theorem 3.1, this information can be con-
veniently built into and then obtained from the tran-
sitive closure on the MCC overlapping graph.

An MCC overlapping graph is constructed out of
the layout of the MCCs. Given an MCC set
S = (M1,M2, . . . ,Mn) in the mesh, we construct a
directed graph GI

S ¼ ðV ;AIÞ with vertex set
V = {v1,v2, . . . ,vn}, where vi represents MCC Mi,
and the ‘‘I’’ superscript in GI

S and AI refers to
Type-I. The set of edges AI is defined as follows:
If Mi’s northeast node, Ui, is ‘‘immediately below’’
Mj and ‘‘properly covered’’ by Mj’s west–east span,
then there is a directed edge pointing from vi to vj.
More formally,

d d

s s

M

M

M
M

1

1

n

n

Fig. 4. (a) Type-I MCC sequence; (b) Type-II MCC sequence.

D. Wang / Journal of Systems Architecture 53 (2007) 619–628 623

Aut
ho

r's

pe
rs

on
al

co

py

AI ¼ fðvi; vjÞ
j going north from U i;Mj is the first encountered

MCC such that yðU iÞ < yðU jÞ ^ xðLjÞ
� 2 < xðU iÞ < xðUjÞg:

Fig. 5 shows an example of two MCCs Mi and Mj

such that there is a directed edge from vi to vj in GI
S .

An obvious choice of data structure for GI
S is an

n · n 2D array, denoted gI
S . The value of an element

gI
Sði; jÞ will be either 0 or 1:

gI
Sði; jÞ ¼

1 ifðvi; vjÞ 2 AI

0 ifðvi; vjÞ 62 AI

(

The transitive closure of gI
S , denoted T ðgI

SÞ, tells
whether there exits a directed path from one vertex
to another in GI

S , i.e.,

T ðgI
SÞði;jÞ¼

1 if there exists a directed path from vi to vj

0 otherwise

�

Symmetrically, we can construct overlapping graph
GII

S ¼ ðV ;AIIÞ for Type-II MCC sequence, where AII

is defined as follows: If Mi’s northeast node, Ui, is
‘‘immediately left to’’ Mj and ‘‘properly covered’’
by Mjs south-north span, then there is a directed
edge pointing from vi to vj, i.e.,

AII ¼ fðvi; vjÞ
j going east from U i;Mj is the first encountered

MCC such that xðU iÞ < xðUjÞ ^ yðLjÞ
� 2 < yðUiÞ < yðUjÞg:

Once T ðgI
SÞ and T ðgII

S Þ are computed, based on The-
orem 3.1, the existence problem for Manhattan
route between a particular pair of nodes, say (0, 0)
and (xd,yd), can be solved by an algorithm in O(n)
time with O(n3) preprocessing time, where n is the
number of MCC fault blocks [19]. (Compared to
mesh size, n is a very small quantity.) We will refer

the determination algorithm as Manhattan in this
paper. Manhattan will be run first to determine
whether there is a Manhattan route between source
and destination nodes. If YES is returned, the min-
imal routing algorithm MIN_ROUTING intro-
duced in [19] will be called. If NO is returned, we
will use the routing algorithm described in the next
section.

4. Heuristic fault-tolerant routing using MCC

4.1. Routing algorithm

gI
S , T ðgI

SÞ, gII
S , and T ðgII

S Þ, as described in the pre-
vious section, are all computed in the preprocessing
phase of the routing algorithm.

The greedy routing algorithm we propose will
force the route to take some ‘‘backward’’ moves in
cases it seems inevitable.

Definition 4.1. Use U 0i to denote the immediate
northeast node of Ui, i.e., xðU 0iÞ ¼ xðUiÞ þ 1 and
yðU 0iÞ ¼ yðU iÞ þ 1. Use L0j to denote the immediate
southwest node of Lj, i.e., xðL0jÞ ¼ xðLjÞ � 1 and
yðL0jÞ ¼ yðLjÞ � 1.

The simplest way to backwardly get around a
reached MCC is shown in Fig. 6. The routing goes
straight up from U 0i until Mj is reached. It then goes
along Mj’s lower boundary (‘‘west-first-south-sec-
ond’’) until L0j is reached.

The heuristic routing algorithm with respect to
Type-I MCCs is given below.

1. From node (xs,ys), go straight up until an MCC
Mi is reached; goto Step 2

2. for all j such that T ðgI
SÞði; jÞ ¼ 1 do // Mi is

‘‘chainedly’’ under Mj

{
Call Manhattan ðL0j; ðxd; ydÞÞ
if Manhattan ðL0j; ðxd; ydÞÞ ¼ YES
{

J j // Remember this j

M

M

i

i

j
j j

j

U

U

west-east span

L

v

vi

Fig. 5. (a) Two MCC’s Mi and Mj; (b) There will be a directed
edge from vi to vj in GI

S .

Mj

Mi

Lj'

Ui'

Fig. 6. Backwardly get around Mj.

624 D. Wang / Journal of Systems Architecture 53 (2007) 619–628

Aut
ho

r's

pe
rs

on
al

co

py

break for-loop; goto Step 3
}

}
goto Step 4 // Manhattan returns NO for
all j

3. // Entering this step, Manhattan has returned
YES for some j = J

3.1. Go along the lower boundary of MCC
sequence until MJ is reached
3.2. Take the backward route (toward
southwest) until L0J is reached
3.3. From node L0J , call algorithm
MIN_ROUTING to minimally route to node
(xd,yd)
Algorithm terminates.

4. // Entering this step, Manhattan did not find
any Mj, such that there is minimum route from
L0j to (xd,yd)
4.1. Go along the backward route (toward
southwest) of Mi until L0i is reached
4.2. Let ðxs; ysÞ L0i; goto Step 1

Step 1 is straightforward. When the routing
enters Step 2, it reaches an MCC block Mi. The pur-
pose of Step 2 is to figure out a place to ‘‘get
around’’ the chainedly blocking MCCs. The greedy
strategy checks for a lower left corner, from which a
Manhattan route to destination can be effected.

Suppose there is a Manhattan route from the
lower left corner of an MCC, and MJ is the first

such MCC (it could be the case that J = i). Then
the routing goes along the lower boundary of
MCC sequence until MJ is reached. It then takes
the backward route (toward southwest) until L0J is
reached. From node L0J , it calls algorithm
MIN_ROUTING to minimally route to node
(xd,yd). This is Step 3, and the idea is illustrated
in Fig. 7a.

However, if Manhattan did not find any Mj, such
that there is minimum route from L0j to (xd,yd), the
algorithm will just ‘‘get around’’ from the lower left
corner of Mi, and the routing continues at L0i. This is
Step 4, and the idea is illustrated in Fig. 7b.

The phase with respect to Type-II MCC’s is just a
dual process.

4.2. Complexity analysis

The routing process is initiated only at source
node s. The routing program traverses the nodes it
chooses until destination d is reached. To assist in
making routing decisions, matrices gI

S (gII
S) and

T ðgI
SÞðT ðgII

S ÞÞ have to be consulted from time to
time. Therefore they have to be carried with the
routing program.

The majority of computation is done in Step 2,
when an MCC is encountered. In the for-loop, algo-
rithm Manhattan is run at most O(n) times, with
each run taking O(n) time. Since Step 2 will be

a b

'

'

'

'

'

'

Fig. 7. (a) Step 3 – It has been determined in Step 2 that there is an MJ in the ‘‘upward’’ chain of MCCs, such that from MJ’s lower-left
corner L0J there is a Manhattan route to the destination. The routing algorithm then just keeps going ‘‘northeast’’ until reaching MJ, and
then goes ‘‘backward’’ to L0J to take the Manhattan route; (b) Step 4 – It has been determined in Step 2 that there is no such an MJ as in (a).
Therefore going ‘‘northeast’’ will not lead to destination. The routing algorithm then goes ‘‘backward’’ right away to L0i, and start a new
probing from there.

D. Wang / Journal of Systems Architecture 53 (2007) 619–628 625

Aut
ho

r's

pe
rs

on
al

co

pyentered at most O(n) times, the total time spent on
decision making is bounded by O(n3) in the whole
routing process, where n is the number of MCC
blocks. Note that the experimental results showed
that n is a very small number compared to the size
of mesh.

Every time Step 2 is entered, the algorithm
‘‘greedily’’ takes the first available lower left corner,
from which there is a minimum route to d. The final
route worked out by this algorithm is heuristic in
nature and is not necessarily shortest. There is no
need to distribute any fault block information in
non-faulty nodes. The path traversed by the routing
program is the same path traversed by messages. No
extra nodes are involved in routing process.

5. Experimental results and discussion

We conducted simulation experiments to evalu-
ate the performance of the heuristic route-finding
algorithm. For given fault rates, faulty nodes are
randomly generated for square meshes of various
sizes, and MCC blocks are formed for these faulty
nodes. The proposed heuristic routing algorithm is
run using these MCC blocks. The length of route
worked out by the heuristic routing algorithm is
compared with that of the shortest possible route.
The table in Fig. 8 shows the result for fault rate

0.25. Simulation results for other fault rates follow
exactly the same pattern. The data used in Fig. 8
is the average of 500 runs. The second row in the
table gives the Manhattan distance of source/desti-
nation under consideration. The third and fourth
rows in the table list length of the shortest route
and length of heuristic route, respectively, for
meshes of different sizes. It can be seen that in all
cases, heuristic route length deviates from the short-
est route length only by a small distance.

To understand why the heuristic length would
deviate very little from the shortest length, another
group of experiments were conducted. We ran-
domly generated faulty nodes, and observed the pat-
tern of MCC distributions in terms of allowing
feasible routes. Meshes of sizes 50 · 50, 60 · 60,
70 · 70, 80 · 80, and 90 · 90 were simulated. The
table in Fig. 9 shows the result for meshes of
70 · 70. Results for other sizes show the same trend.
When the fault rate is 0.21 (first column in the
table), all 1000 groups of generated faults allow
Manhattan routes from source to destination, using
MCC fault blocks. As the fault rate increases, the
MCC distributions that allow Manhattan routes
decrease. When a distribution allows no Manhattan
routes, two possibilities exist: either there is no fea-
sible route at all (totally blocked), or there are
routes but they are non-Manhattan. For example,

Fig. 8. Heuristic route length vs. shortest route length. The fault rate used for this table/diagram is 0.25.

Fig. 9. Statistics of MCC distributions that allow Manhattan, non-Manhattan routes, and no routes at all, for mesh of size 70 · 70.

626 D. Wang / Journal of Systems Architecture 53 (2007) 619–628

Aut
ho

r's

pe
rs

on
al

co

py

in the fourth column, when fault rate is 0.27, among
the 1000 groups of generated faults, 897 groups
allow Manhattan routes from source to destination,
98 groups allow no route at all, and five groups
allow non-Manhattan routes. The table indicates
that the MCC distributions have a tendency of
either allowing Manhattan routes, or no routes at
all (as fault rate increases). Only by a very small
chance, a distribution would allow no Manhattan
routes, but non-Manhattan routes. That fact
explains the behavior observed in Fig. 8: If a non-
Manhattan route exists, the heuristic algorithm
will be called. Step 2 is to find the first available
‘‘lower left corner,’’ from which there is a Manhat-
tan route to destination. By extremely high proba-
bility, such a corner will be found very soon. That
is, the ‘‘backward detour’’ will be taken almost

always only once (in the algorithm, Step 3 will be
almost always entered after Step 2). This chosen
backward detour may not be the shortest, but the
difference between the chosen backward detour
and the shortest backward detour (which would
take much more time to find) is the only contributor
of the deviation, which happens to be a small quan-
tity on average.

The heuristic routing algorithm is much simpler
than shortest routing, which would basically resort
to exhaustive search. The simulation results suggest
that the lengths of routes worked out by the heuris-
tic algorithm are very close to that of shortest
routes. Therefore for most routing tasks, heuristic
routing should be in order.

6. Conclusion

We proposed a heuristic algorithm that takes
greedy approach to compute a nearly shortest route
among the Minimal-Connected-Component fault
blocks [19], which was proposed for increasing the
chance of finding minimal routes among faults.
Experiments show that the algorithm works out
convincingly good routes in terms of average path
length, deviating from the real shortest route by
only a few Hamming distance. The total time spent
on decision making is bounded by O(n3) in the
whole routing process, where n is the number of
MCC blocks and is a very small number compared
with the size of mesh.

Since finding a shortest route among all possible
routes, avoiding all faults, is a time consuming job,
it makes sense to seek for a trade-off between route
length and the time spent finding it. In a multipro-

cessor computer system, a route for a specific
source/destination may only be used a few times.
This makes the exhaustive search for a shortest
route particularly uneconomical. Routing from
one node to another is taking place all the time in
multiprocessor computers. In many cases, it is pref-
erable that a route be worked out quickly, and used
to pass messages, rather than spend too much time
computing an absolutely shortest route. The pro-
posed algorithm provides an important option for
fault-tolerant routing.

Acknowledgement

The author thanks Peng Du, of the State Key
Laboratory for Novel Software Technology at Nan-
jing University, for his help in implementing the
experiments and providing simulation data.

References

[1] R.V. Boppana, S. Chalasani, Fault-tolerant wormhole rout-
ing algorithms for mesh networks, IEEE Trans. Comput. 44
(7) (1995) 848–864.

[2] Y.M. Boura, C.R. Das, Fault-tolerant routing in mesh
networks, in: Proceedings of the 1995 International Confer-
ence on Parallel Processing, 1995, pp. I 106–I 109.

[3] Z. Chen, Z. Liu, Z. Qiu, A deadlock-free wormhole routing
scheme in the pan-mesh, Proceedings of the 20th Interna-
tional Conference on Advanced Information, Networking
and Applications, 2003, pp. 825–829.

[4] A.A. Chien, J.H. Kim, Planar-adaptive routing: low cost
adaptive networks for multiprocessors, in: Proceedings of the
19th International Symposium on Computer Architecture,
1992, pp. 268–277.

[5] G.M. Chiu, S.P. Wu, Fault-tolerant routing strategy in
hypercube multicomputers, IEEE Trans. Comput. 45 (2)
(1996) 143–155.

[6] W.J. Dally, The J-Machine: system support for actors, in:
Hewitt, Agha (Eds.), Actors Knowledge-Based Concurrent
Computing, MIT Press, 1989.

[7] P.T. Gaughan, B.V. Dao, S. Yalamanchili, D.E. Schimmet,
Distributed, deadlock-free routing in faulty, pipelined, direct
interconnection networks, IEEE Trans. Comput. 45 (6)
(1996) 651–665.

[8] G.J. Glass, L.M. Ni, Fault-tolerant wormhole routing in
meshes without virtual channels, IEEE Trans. Parallel
Distributed Syst. 7 (6) (1996) 6201–6360.

[9] H.X. Gu, Z.J. Liu, Building a terabit router with XD
networks, Lecture Notes in Computer Science 3740 (2005)
520–528.

[10] T.C. Lee, J.P. Hayes, A fault-tolerant communication
scheme for hypercube computers, IEEE Trans. Comput. 41
(10) (1992) 1242–1256.

[11] S. Lee, D. Moon, H. Kim, W. Chang, A genetic routing
algorithm for a 2D-meshed fault-tolerant network system, in:
Proceedings of the First International on Workshop

D. Wang / Journal of Systems Architecture 53 (2007) 619–628 627

Aut
ho

r's

pe
rs

on
al

co

py

Advanced Internet Services and Applications, Lecture Notes
in Computer Science, vol. 2402, 2002, pp. 39–46.

[12] A.C. Liang, S. Bhattacharya, W.T. Tsai, Fault-tolerant
multicasting on hypercubes, J. Parallel Distributed Comput.
23 (3) (1994) 418–428.

[13] R. Libeskind-Hadas, E. Brandt, Origin-based fault-tolerant
routing in the mesh, in: Proceedings of the the First
International Symposium on High Performance Computer
Architecture, 1995, pp. 102–111.

[14] S.L. Lillevik, The Touchstone 30 Gigaflop DELTA proto-
type, in: Proceedings of the Sixth Distributed Memory
Computing Conference, 1996, pp. 671–677.

[15] R.S. Rajesh, S. Arumugam, An optimistic deadlock free
adaptive wormhole routing algorithm for two dimensional
meshes, Commun. Comput. (2004) 21–24.

[16] C.L. Seitz, The architecture and programming of the Amete
Series 2010 multicomputer, in: Proceedings of the Third

Conference on Hypercube Concurrent Computers and
Applications,1998, pp. I 33–I 36.

[17] C.C. Su, K.G. Shin, Adaptive fault-tolerant deadlock-free
routing in meshes and hypercubes, IEEE Trans. Comput. 45
(6) (1996) 666–683.

[18] Y.-J. Suh, B.V. Dao, J. Duato, S. Yalamanchili, Software
based fault-tolerant oblivious routing in pipelined networks,
in: Proceedings of the 1995 International Conference on
Parallel Processing, 1995, pp. I 101–I 105.

[19] D. Wang, A rectilinear-monotone polygonal fault block
model for fault-tolerant minimal routing in mesh, IEEE
Trans. Comput. 52 (3) (2003) 310–320.

[20] J. Wu, Reliable unicasting in faulty hypercubes using safety
levels, IEEE Trans. Comput. 46 (2) (1997) 241–247.

[21] J. Wu, Fault-tolerant adaptive and minimal routing in mesh-
connected multicomputers using extended safety levels,
IEEE Trans. Parallel Distributed Syst. 11 (2) (2000) 149–159.

628 D. Wang / Journal of Systems Architecture 53 (2007) 619–628

